首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Currently available methods to prepare conducting polymers‐coated colloidal substrates for biomedical applications need to be improved because they involve the use of toxic reagents and tend to result in aggregated products with diminished conductivity. The work herein describes for the first time a facile strategy for preparing highly water‐dispersible, highly conductive, and biocompatible polypyrrole‐coated silica core–shell (SiO2@PPy) particles using only chondroitin sulfate (CS), a biologically derived polymer, as the stabilizer and dopant. The CS preadsorbed onto silica surface serves as a template to control the confined growth of the PPy shell and doping of in situ polymerized PPy shell. The thickness of the PPy shell can be tuned from 8 to 17 nm by varying the CS preadsorbed amount. Increasing the thickness of the adsorbed CS layer can control the deposition of thinner PPy shells on an SiO2 core surface to provide highly water‐dispersible SiO2@PPy particles. Moreover, CS‐doped SiO2@PPy particles exhibit conductivities as high as 5.3 S cm?1. The conductivity of the particles depends on the PPy mass loading and the doping level of the PPy shell. Furthermore, the SiO2@PPy particles exhibit good biocompatibility and therefore have potential applications in biomedicine.  相似文献   

2.
Magnetic Fe3O4/SiO2 particles with rod-like structure and hollow interior have been constructed by a template method. During this procedure, β-FeOOH was firstly synthesized as the rod-like template to fabricate β-FeOOH/SiO2 core/shell-like particles. These β-FeOOH/SiO2 nanorods could be further transformed to Fe3O4/SiO2 via the decomposition-reducing method. These particles showed ferromagnetic behavior at room temperature with high coercivity and may provide potential applications in biological area.  相似文献   

3.
Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu2O.  相似文献   

4.
Uniform Cu2O hollow spheres fabricated by single-crystalline particles (smaller than 20 nm) are facile synthesized in ethylene glycol (EG) solution by a simple solvothermal route without using pre-fabricated templates and reductive agents. EG in this protocol is not only used as a solvent, complexing agent, and reducing agent, but also served as a structure-directing agent for the formation of hollow structure. By control of reaction conditions, such as reaction time, temperature, and the anions, the morphology and structure of the hollow spheres can be tuned. A coordination adsorption and oriented attachment and Ostwald ripening mechanism is proposed for explaining the formation process of hollow Cu2O spheres in EG solution; and importantly, the hollow Cu2O spheres exhibit an excellent property for the electro-catalytic oxidization of ascorbic acid in acetic acid buffer solution. Moreover, the hollow spherical Cu2O particles could be potentially applied in catalysis, sensor, and as model for fundamental research.  相似文献   

5.
In this paper, an Au/Ag bimetallic hollow nanostructure was obtained by using SiO2 nanospheres as sacrificial templates. The nanostructure was fabricated via a three steps method. SiO2@Au nanospheres were first synthesized by the layer-by-layer technique, and then they were coated with a layer of Ag particles, finally, the Au/Ag bimetallic hollow nanospheres were obtained by dissolution of the SiO2 core by exposure in HF solution. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and UV visible absorption spectroscopy were used to investigate the prepared nanostructures. The effectiveness of these Au/Ag bimetallic hollow nanospheres as substrates toward surface-enhanced Raman scattering (SERS) detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such Au/Ag bimetallic hollow nanospheres structure films which consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement. The Au/Ag bimetallic hollow nanostructured aggregate, interconnected nanostructured aggregate and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

6.
We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe3O4 nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe3O4 nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe2+ and Fe3+ and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.  相似文献   

7.
不使用任何模板一步制得空心Fe3O4纳米颗粒,然后将海藻酸钠嫁接在氨基化的空心Fe3O4表面,再利用海藻酸盐与钙离子的作用,在空心Fe3O4表面形成一个凝胶化层,制得海藻酸盐凝胶化的空心Fe3O4纳米颗粒,粒径约为400~500 nm.采用TEM、XRD、XPS、VSM等手段对纳米微球进行表征.VSM表征结果表明在室温下样品磁性材料为超顺磁性.改性Fe3O4纳米颗粒成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为28.4%和14.2%.缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢地释放.  相似文献   

8.
The α-Fe2O3/TiO2 bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb2+ are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe2O3/TiO2 hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe2O3/TiO2 hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe2O3/TiO2 hollow spheres is 32.36 mg g?1. Moreover, the hierarchical α-Fe2O3/TiO2 hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe2O3/TiO2 hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.  相似文献   

9.
The results of the first experiments with a spin-echo small-angle neutron scattering (SESANS) device built at the VVR-M reactor at the St. Petersburg Institute of Nuclear Physics (Gatchina) are presented. SESANS utilizes the possibilities of the spin-echo method for determining the structural characteristics of materials in real space with on the 10–104-nm length scale. Validation measurements are conducted using SiO2 colloidal particles. Samples of SiO2 spheres with a diameter determined through scanning electron microscopy and synchrotron-radiation ultra-small-angle scattering are used for calibration of the device. Approximation of the data obtained with the SESANS device was conducted using the autocorrelation function for dilute monodisperse spheres. The sizes of the spheres determined via SESANS are in agreement with those determined by other methods within the experimental error.  相似文献   

10.
TiO2 hollow spheres have been prepared by hydrothermal method using carbon spheres as hard templates based on template-directed deposition and calcination in order to remove templates. The morphology and structure of samples were systematically characterized by using various techniques, including XRD, zeta analyzer, SEM, TEM, DRS and FTIR. In this approach, the anatase phase was retained for temperatures up to 900 °C. Moreover, negative charged titania is deposited onto the negative charged surface of carbon spheres, which is proved by nanoparticle size analyzer. Therefore, a possible formation mechanism of TiO2 hollow spheres was proposed. TiO2 hollow spheres calcined at 550 °C exhibited the superior photocatalytic activity for the degradation of Rhodamine B, 2.9 times greater than that of Degussa P25. Furthermore, thermal stability of TiO2 hollow spheres was examined. Fortunately, we found that hollow structures could still be visible distinctly after calcining at 900 °C.  相似文献   

11.
Mesoporous silica materials have already proved to be non-toxic and biocompatible, and also to have large pore volume and very high specific surface area suitable for loading of small molecules. Having this in mind and the fact that silicon dioxide (SiO2) powders can be so designed to obtain particle structures organized at multi levels, SiO2 was chosen as a potential carrier for metronidazole, an antibiotic drug. SiO2 powder was synthesized in two stages: first silica sol was prepared by hydrothermal synthesis and second the sol was converted into powder by dry spraying with simultaneous incorporation of the antibiotic into its structure. Scanning and transmission electron microscopy study revealed very complex structure and sub-structure of SiO2 particles. Cell viability tests were used for estimation of cytotoxicity of so synthesized SiO2. The drug release data showed that the system can provide drug release for a long time. Also, the device behavior is fully predictable, according to our theoretical model of multilevel structure design, and gives many opportunities for model investigations of drug release and its kinetics. The pore sizes and their distribution were observed as a limiting factor of drug release kinetics. Therefore, as the pore sizes are given as a set of discrete values, the kinetics of drug release might also be given as a set of corresponding discrete values.  相似文献   

12.
In order to reveal the optical limiting mechanisms of semiconductor hollow spheres, the nonlinear optical properties of CuS and Cu2O hollow spheres were investigated via the fluence-dependent transmittance and the nonlinear scattering measurements. The CuS and Cu2O hollow spheres have similar morphologies and different types of optical band-gap. The experimental results show that the optical limiting performance of CuS is better than that of Cu2O, although the nonlinear scattering of Cu2O is stronger than that of CuS. Free-carrier absorption based on the delocalized carriers (holes) in CuS is believed to play an important role in the optical limiting effects. The merits of the structure of semiconductor hollow spheres used for optical limiting were discussed.  相似文献   

13.
采用改进的碱催化法和种子法分别制得了稀土配合物Eu(TTFA)3掺杂的SiO2杂化胶体球,并用透射电子显微镜和荧光分光光度计对其显微形貌和荧光光谱特性进行了详细地研究.结果表明,两种方法都可以获得单分散性的、稀土配合物掺杂SiO2杂化胶体球,且都具有Eu3+离子典型的荧光光谱特性.Eu(TTFA)3掺杂入SiO2胶体球中后,有机配体TTFA在短波长处的吸收明显增强了,最大的吸收峰位也向短波长方向移动大约20~30 nm,Eu3+离子5D0→7F2发射跃迁仍然具有良好的窄线发光特征,同时荧光峰值的形态和位置受SiO2基体的影响发生轻微的变化.  相似文献   

14.
Zinc blende (ZB) CdSe hollow nanospheres were solvothermally synthesized from the reaction of Cd(NO3)2·4H2O with a homogeneously secondary Se source, which was first prepared by dissolving Se powder in the mixture of ethanol and oleic acid at 205 °C. As Se power directly reacted with Cd(NO3)2·4H2O in the above mixed solvents, wurtzite (W) CdSe solid nanoparticles were produced. Time-dependent experiments suggested that the formation of CdSe hollow nanospheres was attributed to an inside-out Ostwald ripening process. The influences of reaction time, temperature and ethanol/oleic acid volume ratio on the morphology, phase and size of the hollow nanospheres were also studied. Infrared (IR) spectroscopy investigations revealed that oleic acid with long alkene chains behaved as a reducing agent to reduce Se powder to Se2− in the synthesis. Photoluminescence (PL) measurements showed that the ZB CdSe hollow nanospheres presented an obvious blue-shifted emission by 42 nm, and the W CdSe solid nanoparticles exhibited a band gap emission of bulk counterpart.  相似文献   

15.
A silanization process was employed to transfer hydrophobic quantum dots (QDs) prepared via an organic route at high temperature into water phase. The QDs were further coated with a thin organic SiO2 shell to form QDs@SiO2 composite nanoparticles by ligand exchange or remaining initial organic ligands on the surface. In this study, QDs with different ligands, either trioctylphosphine oxide (TOPO) or oleic acid (OA), were employed to investigate the effects of ligands on the reverse micelles in preparing QDs@SiO2 nanoparticles. In the preparing process, hydrophobic QDs were silanized by partially hydrolyzed tetraethyl orthosilicate (TEOS). For TOPO-capped CdSe QDs, surface TOPO ligands were completely replaced by partially hydrolyzed TEOS. As for OA-capped CdSe/Cd x Zn1?x S QDs, surface OA ligands were partially replaced. It was found that the ligand exchange drastically reduced the photoluminescence (PL) efficiency of CdSe QDs. Furthermore, the cytotoxicity studies of QDs@SiO2 have been carried out in detail. The results indicate that CdSe/Cd x Zn1?x S QDs@SiO2 composite nanoparticles exhibit lower cytotoxicity compared with CdSe QDs@SiO2, because the SiO2 shell and remained OA ligand layer can effectively prevent the leakage of toxic Cd2+ ions. Meanwhile, it was found that these CdSe/Cd x Zn1?x S QDs@SiO2 nanocomposites could keep excellent PL properties even for 24 h incubating with Siha cells, which indicating that our prepared composite nanoparticles are potentially applicable for cell imaging in biological systems.  相似文献   

16.
Hollow ZnV2O4 spheres with the shell aggregated by small nanoparticles were successfully synthesized through a facile one-pot template-free solvothermal method. The as-prepared product was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller N2 adsorption-desorption analyses. The formation of ZnV2O4 hollow spheres was based on flowerlike intermediate products supported reduction-dissolution-aggregation process at the expense of consumption of all the flowerlike products. The obtained ZnV2O4 hollow spheres showed a good adsorption capacity of methylene blue (MB) organic dye, which might be attributed to their special structural feature with large surface area. The adsorption kinetics and isotherm of MB on ZnV2O4 hollow spheres were also studied.  相似文献   

17.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

18.
Three-dimensional (3D) architecture of TiO2 hollow sphere has many excellent and interesting performances that attract significant attention nowadays. In this paper, a simple surface erosion approach to the fabrication of TiO2 hollow spheres via the hydrothermal process has been developed. The morphologies and the phase were characterized by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The results indicate that the anatase-type TiO2 hollow spheres with a diameter of ∼1 μm are successfully synthesized. The shell thickness of TiO2 hollow spheres is ∼150 nm and the size of hollow cavity is ∼600 nm. By the control experiments, the influence of ammonium fluoride and hydrogen peroxide on the hollow spherical structures was studied. Hydrogen peroxide acts as both the oxidant and the bubble generator, ammonium fluoride is crucial for the erosion and dissolution of titanium, the detailed dissolution-crystallization mechanism for the formation of TiO2 hollow spheres was also proposed.  相似文献   

19.
TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2−xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2−xNx in spite of the structural difference.  相似文献   

20.
Dense-packed CdSe nanoclusters synthesized by sequential ion implantation of Cd+ and Se+ in thermally grown SiO2 are subjected to high electric field strengths in a metal oxide semiconductor (MOS) structure. The nanocrystal-containing device shows efficient CdSe band-edge photoluminescence (PL) when excited by a cw-HeCd laser operating at a wavelength of 442 nm at room temperature. An effective PL quenching and enhancement has been observed. Depth-resolved μ-PL measurements reveal an exponential decrease, which is depth-correlated with a layer of nanoparticles near the surface, whereas the optical non-linearity of the PL increases in parallel. The PL spectra and particle size distribution suggest an energy transfer from the nanoscopic to adjacent large particles. It can be concluded from these results that charge injection into the near-surface region of the nanocluster/SiO2 system might be the reason for the asymmetric and hysteretic electro-optic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号