首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Thin InP layers were grown by metalorganic vapor phase epitaxy on the ternary compound GaAs0.5Sb0.5 lattice matched to InP(1 0 0). The heterojunctions were studied with in situ reflectance anisotropy spectroscopy and benchmarked in ultrahigh vacuum with ultraviolet and X-ray photoelectron spectroscopy and low energy electron diffraction with regard to the sharpness of the interface. During growth of GaAs0.5Sb0.5 an Sb-rich (1×3)-like reconstruction was observed and during stabilization with TBAs an As-rich c(4×4) reconstruction. These two different reconstructions of GaAs0.5Sb0.5(1 0 0), well-known from the binaries GaSb(1 0 0) and GaAs(1 0 0) respectively, were used for preparing InP/GaAs0.5Sb0.5 heterojunctions. The RA spectra of thin heteroepitaxial InP layers were compared to a well-established RA spectrum of MOVPE-prepared homoepitaxial, (2×1)-like reconstructed P-rich InP(1 0 0), that was used as a reference spectrum of a well defined surface. Growing InP on the c(4×4) reconstructed GaAsSb(1 0 0) surface resulted in a significantly sharper interface than InP growth on (1×3) reconstructed GaAsSb(1 0 0).  相似文献   

2.
In the present work, X-ray photoelectron spectroscopy (XPS) was used to investigate the composition depth profiles of Bi3.15Nd0.85Ti3O12 (BNT) ferroelectric thin film, which was prepared on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD). It is shown that there are three distinct regions formed in BNT film, which are surface layer, bulk film and interface layer. The surface of film is found to consist of one outermost Bi-rich region. High resolution spectra of the O 1s peak in the surface can be decomposed into two components of metallic oxide oxygen and surface adsorbed oxygen. The distribution of component elements is nearly uniform within the bulk film. In the bulk film, high resolution XPS spectra of O 1s, Bi 4f, Nd 3d, Ti 2p are in agreement with the element chemical states of the BNT system. The interfacial layer is formed through the interdiffusion between the BNT film and Pt electrode. In addition, the Ar+-ion sputtering changes lots of Bi3+ ions into Bi0 due to weak Bi-O bond and high etching energy.  相似文献   

3.
Ferroelectrics SrBi2Ta2O9 (SBTO) thin films were grown on a highly oriented Pt/Ti/SiO2/Si substrates using the pulsed laser ablation. The ac impedance of SBTO thin films have been measured at room temperature both in the frequency range from 10−1 to 106 Hz and bias voltage range from −6 to 6 V. The ac impedance dispersion was observed at low frequency with increasing bias voltage, which was interpreted based on a blocked charge. We can explain that the blocking interface gives rise to constant phase element (CPE) response, and we give an impedance model function that can fit data along the low frequency range when such a CPE is found. The low frequency dispersion phenomena of SBTO thin film are related to a charge diffusion process at the surface of thin film.  相似文献   

4.
Qian  Xinming  Zhang  Xintong  Bai  Yubai  Li  Tiejin  Tang  Xinyi  Wang  Erkang  Dong  Shaojun 《Journal of nanoparticle research》2000,2(2):191-198
-Fe2O3 single crystal thin films have been prepared from 45nm diameter colloid. These thin nanocrystalline films exhibit a typical behavior of n-type semiconductor material because of the anodic photocurrent generation. The anodic photocurrent response upon illumination and the reversal spike of cathodic current upon the light switched off suggests that the electrons can flow in both directions and no space charge layer exists at the thin film/electrolyte interface. The decreased photocurrent responses of thicker films can be explained by the electric resistance effect and recombination effect. Moreover, the thicker film will lead to a poor photocurrent response for short wavelength light. Considering the use of sunlight, the thin film thickness should be controlled to an optimal value.  相似文献   

5.
(100)-oriented LaNiO3 (LNO) thin films were grown on Si substrates by a sol-gel method followed by a rapid thermal process at temperatures ranging from 650 °C to 800 °C. The films produced at 700 °C had a resistivity of 1.79 mcm and could be used as bottom electrodes in the fabrication of ferroelectric capacitors on Si. Subsequently, a sol-gel derived Eu-doped Pb(Zr0.52,Ti0.48)O3 (PEZT) thin film with a thickness of 130 nm prepared on the LNO electrode was found to have a (100)-oriented texture. Possible reasons for the high degree of (100) orientation in PEZT thin films are given. Good ferroelectric performance was obtained for Au/PEZT/LNO capacitors. The remnant polarization (2Pr) was found to be 22 C/cm2 at a coercive electric field (Ec) of 134 kV/cm. After 1011 polarization reversals, Pr decreased by only 15%. PACS 68.37.Yz; 68.37.Hk  相似文献   

6.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   

7.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

8.
The Monte Carlo simulations of the surface electrostatic potential are presented for the hematite (0 0 0 1) crystal plane. According to the ab initio calculations, the Fe-terminated (0 0 0 1) plane contains only one type of surface groups. The charge of this surface group is predicted using quantum population analyses, and the result is very close to this of the 1-pK model assumption. The surface topology and topography were constructed using the relaxed crystal plane structure. The Monte Carlo simulations for the reduced (including only hydrogen ions) and the extended (containing also electrolyte) models give the linear non-Nernstian pH-profile of surface potential. The simulation results are in agreement with the experimental measurements carried out by Kallay et al. [N. Kallay, Z. Dojnovi?, A. Cop, J. Colloid Interface Sci. 286 (2005) 610-614.] in the point of zero charge vicinity. This suggests that in this pH-region the surface properties are basically governed by the H+ ions uptake/release and the electrolyte ions complexations. The discrepancy for strongly acidic and basic regions suggests that some additional processes take place in the single-crystal electrode measurement, which results in the non-linear ψ0=f(pH) profile.  相似文献   

9.
Atomic force microscopy (AFM) has been used to characterize the growth of Au deposited via evaporation onto the positive face of single crystalline, lithium niobate, LiNbO3(0 0 0 1) surface. In order to study the mechanisms for the ordering and aggregation of a noble metal on this ferroelectric surface, topographic and phase contrast imaging of the fractional surface coverage of Au were performed. Atomically flat, uniformly poled LiNbO3 surfaces were prepared via an ambient high temperature anneal and served as a support for the thin gold films. These gold atomic layers were grown using electron bombardment evaporation sources under ultra-high vacuum (UHV) conditions and subsequently characterized under both vacuum and ambient environments. Using AFM it was found that gold preferentially nucleates at the top of LiNbO3 substrate step edges. With increased coverage, island formation proceeds due to local aggregation of adsorbed gold on each substrate terrace. Based on local imaging of the growth morphology, the data is discussed in terms of thin film growth mechanisms as well as the influence of native surface features such as defects and charge distribution. Understanding growth mechanisms for gold layers on ferroelectric surfaces allows for a fuller appreciation of how atomic deposition of metal atoms on patterned poled LiNbO3 surfaces would occur as well as yielding greater insight on the atomic characteristics of metals on ferroelectric interfaces.  相似文献   

10.
In this paper we present the growth of La0.5Sr0.5CoO3 (LSCO) films on MgO, quartz, and silicon substrates by pulsed laser deposition (PLD) using a Ti:sapphire laser (50 fs, 800 nm wavelength). The morphology and the structure of the films were studied by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. The films were polycrystalline and exhibit a good adherence to the Si substrate. Different deposition parameters such as substrate temperature, oxygen pressure, and laser fluence were varied to achieve good surface quality and low resistivity crystalline films. We also defined the optimum conditions in which the deposited film surface is particulate free. The best films (droplets free) were grown at 625 °C, in an ambient oxygen pressure of 6 mbar, with an incident laser fluence of 0.19 J/cm2. This is a mandatory step in the complex work of fabricating La0.5Sr0.5CoO3/BaTiO3/La0.5Sr0.5CoO3 heterostructures for the development of thin film capacitors for non-volatile ferroelectric access memory devices. PACS 81.15 Fg; 42.62-b; 68.65.Ac  相似文献   

11.
Yinghui Yu  Enge Wang 《Surface science》2006,600(22):4966-4971
The collective excitation in Al films deposited on Si(1 1 1)-7 × 7 surface was investigated by high-resolution electron-energy-loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). At the Al film thickness d < 10 ML, the surface plasmon of Al film has only a small contribution to the observed energy-loss peaks in the long wavelength limit (q≈0), while its contribution becomes significant for q>d-1. More interestingly, for thin Al films, the initial slope of the surface plasmon dispersion curve is positive at q0, in a sharp contrast to bulk Al surface where the energy dispersion is negative. These observations may be explained based on the screening interaction of the space charge region at the Al-Si interface.  相似文献   

12.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

13.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

14.
The Ag-In-Se thin films were deposited by e-beam evaporation of the Ag3In5Se9 single crystal powder under high vacuum without intentional doping. Energy dispersive X-ray analysis (EDXA) showed the decreasing behavior of Se and Ag in the structure depending on the annealing. X-ray diffraction (XRD) analysis showed that as-grown films have amorphous structure while annealing the films under nitrogen environment at 200 °C transformed from the amorphous to polycrystalline structure. The crystallinity of the films improved as annealing temperature increases up to 400 °C by 100 °C-step. The polycrystalline films show mixed binary and ternary crystalline phases. Each phase was determined by comparing XRD patterns with complete data cards as Ag3In5Se9, AgInSe2, In4Se3, In2Se3, InSe, Se6 and Se. The existence of Se segregation was supported by the formation of Se aggregates in crystalline phases of Se6 and Se. The X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis have been carried out in order to obtain detailed information about the atomic composition, chemical states and morphology of the thin film surface. The decomposition of In 4d, Se 3d and Ag 3d photoelectron peaks revealed the existence of In-In, In-Se, In-Ag, Se-Se and Ag-Ag bondings in as-grown thin films. After annealing the thin films at different temperatures, the concentration of In-Se and In-Ag bonds decreases significantly, which results in an In-rich, but Ag- and Se-deficient thin film structure. The roughness of the film surface as a result of application of post-annealing in between 200 and 400 °C monitored by AFM technique was observed to change from 1.81 to 22.89 nm.  相似文献   

15.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

16.
We have investigated the effect of bias voltage on sheet resistance, surface roughness and surface coverage of Co/NiOx magnetic bilayer. In addition, interface topography and corrosion resistance of the Ta/Co/Cu/Co/NiOx/Si(1 0 0) system have been studied for Co layers deposited at an optimum bias voltage. Atomic force microscopy (AFM) and four point probe sheet resistance (Rs) measurement have been used to determine surface and electrical properties of the sputtered Co layer at different bias voltages ranging from 0 to −80 V. The Co/NiOx bilayer exhibits a minimum surface roughness and low sheet resistance value with a maximum surface coverage at Vb=−60 V resulted in a slight increase of magnetic resistance and its sensitivity for the Co/Cu/Co/NiOx/Si(1 0 0) magnetic multilayers, as compared with the same magnetic multilayers containing unbiased Co layers. The presence of Ta protection layer improves the corrosion resistance of the multilayers by three orders of magnitude in a humid environment.  相似文献   

17.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

18.
用掠入射X射线衍射法观察到钛酸铅多晶铁电薄膜表面层与体内的相变温度不同,表面层的结构参数也有异于体内;唯象地把多晶铁电薄膜抽象为一个表面层为细晶粒、低应变层,体内为粗晶粒、高应变层的两层结构,根据应力和晶粒尺寸效应对铁电相变的影响,解释了钛酸铅多晶铁电薄膜的相变特征 关键词:  相似文献   

19.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

20.
In this report we present grazing incidence X-ray reflectivity (GIXR) study of SiO2/Si(0 0 1) system. We have analysed the X-ray reflectivity data using recursive formalism based on matrix method and distorted wave Born approximation (DWBA). From the analysis of the reflectivity data we could obtain the electron density profile (EDP) at the interface of the dielectric SiO2 film and the Si(0 0 1) substrate. The EDP obtained from the matrix method follows the DWBA scheme only when two transition layers are considered at the interface of SiO2/Si. The layer which is in proximity with the Si substrate has a higher electron density value than the Si and SiO2 values and it appears as a maximum in the EDP. The layer which is in proximity with the dielectric SiO2 layer has an electron density value lower than the SiO2 value and it appears as a minimum in the EDP. When the thickness of the SiO2 layer is increased the lower density layer diminishes and the higher density layer persists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号