首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, InP(1 0 0) surfaces were bombarded by argon ions in ultra high vacuum. Indium metallic droplets were created in well controlled quantities and played the role of precursors for the nitridation process. A glow discharge cell was used to produce a continuous plasma with a majority of N atomic species. X-ray photoelectron spectroscopy (XPS) studies indicated that the nitrogen combined with indium surface atoms to create InN thin films (two monolayers) on an In rich-InP(1 0 0) surface. This process occurred at low temperature: 250 °C. Synchrotron radiation photoemission (SR-XPS) studies of the valence band spectra, LEED and EELS measurements show an evolution of surface species and the effect of a 450 °C annealing of the InN/InP structures. The results reveal that annealing allows the crystallization of the thin InN layers, while the LEED pattern shows a (4 × 1) reconstruction. As a consequence, InN related structures in EELS and valence bands spectra are different before and after the annealing. According to SR-XPS measurements, the Fermi level is found to be pinned at 1.6 eV above the valence band maximum (VBM).  相似文献   

2.
Electron accumulation states in InN have been measured using high resolution angle-resolved photoemission spectroscopy (ARPES). The electrons in the accumulation layer have been discovered to reside in quantum well states. ARPES was also used to measure the Fermi surface of these quantum well states, as well as their constant binding energy contours below the Fermi level E(F). The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation. This is the first unambiguous observation that electrons in the InN accumulation layer are quantized and the first time the Fermi surface associated with such states has been measured.  相似文献   

3.
ALBA is the Spanish synchrotron facility located in the area of Barcelona. It is a low-emittance, 3 GeV machine having, at present, seven state-of-the-art operating beamlines covering soft and hard X-rays. The hard X-ray beamlines comprise macromolecular crystallography, non-crystalline diffraction (SAXS and WAXS), high-resolution powder diffraction, and absorption spectroscopy. The soft X-ray beamlines include a photoemission beamline with two endstations—one devoted to photoelectron microscopy (PEEM) and the second to near ambient pressure photoemission (NAPP)—and another beamline devoted to XMCD and soft X-ray scattering. Both beamlines allow full control of the polarization of the beam, since they are equipped with helical undulators. An additional soft X-ray beamline, installed on a bending magnet port, is equipped with a full-field transmission X-ray microscope. Additional information may be found at http://www.albasynchrotron.es/en/beamlines.  相似文献   

4.
Photoemission spectroscopy at high energies can be used to probe bulk electronic states. We used a specially designed high-voltage retarding lens and a commercial Perkin-Elmer PHI 10-360 hemispherical electron analyzer to investigate the core and valence band region of Au, YBa2Cu3O7−δ and highly oriented pyrolytic graphite samples with hard X-rays in the energy range 5-14.5 keV. The overall instrumental resolution obtained at 8 keV was 218 meV. The photo ionization cross-sections for Au 5d and 6s excitations were determined experimentally. In comparison with published calculations for atomic cross-sections neglecting corrections for angular anisotropy, the values we find are twice as large for the 5d and an order of magnitude larger for the 6s (conduction band) level. Our results demonstrate the feasibility of bulk sensitive valence band spectroscopy with high resolution at high brilliance X-ray sources such as the ESRF. The measured cross-sections provide important input for improving current theoretical models.  相似文献   

5.
InN layers were directly grown on Ge substrate by plasma-assisted molecular beam epitaxy (PAMBE). The valence band offset (VBO) of wurtzite InN/Ge heterojunction is determined by X-ray photoemission spectroscopy (XPS). The valence band of Ge is found to be 0.18 ± 0.04 eV above that of InN and a type-II heterojunction with a conduction band offset (CBO) of ~ 0.16 eV is found. The accurate determination of the VBO and CBO is important for the design of InN/Ge based electronic devices.  相似文献   

6.
New X-ray photoemission spectroscopy data and high resolution electron scattering spectroscopy data are presented which indicate that a peroxide-like model of the oxygen chemisorption on silicon surface is correct. These results are discussed in light of a recent double-bonded oxygen atom model due to Ludeke and Koma.  相似文献   

7.
InN and In0.46 Ca0.54N films are grown on sapphire with a CaN buffer by metalorganic chemical vapour deposition (MOCVD). Both high resolution x-ray diffraction and high resolution transmission electron microscopy results reveal that these films have a hexagonal structure of single crystal. The thin InN film has a high mobility of 4 75 cm^2V^-1s^-1 and that oflno.46 Gao.54N is 163 cm^2 V^-1s^-1. Room-temperat ure photoluminescence measurement of the InN film shows a peak at 0.72eV, confirming that a high quality InN film is fabricated for applications to full spectrum solar cells.  相似文献   

8.
The core and valence levels of β-PbO2 have been studied using hard X-ray photoemission spectroscopy ( = 6000 eV and 7700 eV). The Pb 4f core levels display an asymmetric lineshape which may be fitted with components associated with screened and unscreened final states. It is found that intrinsic final state screening is suppressed in the near-surface region. A shift in the O 1s binding energy due to recoil effects is observed under excitation at 7700 eV. It is shown that conduction band states have substantial 6s character and are selectively enhanced in hard X-ray photoemission spectra. However, the maximum amplitude in the Pb 6s partial density of states is found at the bottom of the valence band and the associated photoemission peak shows the most pronounced enhancement in intensity at high photon energy.  相似文献   

9.
《Current Applied Physics》2014,14(5):833-837
Synchrotron hard X-ray irradiation can be utilized in lithography processes to manufacture precise structures. Due to the difficulty of precise X-ray mask fabrication in hard X-ray lithography, this X-ray process has been used mainly to fabricate precise microstructures. In this study, a technology is proposed for fabricating novel multi-scale patterns that include submicron-scale structures using hard X-rays. The required X-ray masks for submicron-sized patterning are fabricated by a simple UV lithography process and sidewall metal deposition. Above all, thanks to the high penetration capability of hard X-rays with sub-nanometer wavelengths, it is possible to employ multiple masks to fabricate a variety of patterns. By combining each sub-micron X-ray mask with typical micro-sized X-ray masks, a unique X-ray lithography is performed, and various multi-scale structures are fabricated. The usefulness of the proposed technology is demonstrated by the realization of these structures.  相似文献   

10.
Cs/InN and Ba/InN interfaces were studied by UV photoelectron spectroscopy in the submonolayer coverage range for the first time. Normal photoemission spectra from the valence band and spectra from In 4d, Ba 5p, Ba 4d, and Cs 5p core levels were investigated in the excitation energy range of 60–800 eV. It was found that metallization of the interface and narrowing of the valence band is observed upon increasing coverage.  相似文献   

11.
X-ray based characterization techniques are powerful tools for the study of atomic scale structure of materials. However, high penetrating power of X-rays make them less suitable for depth selective studies, as required in the characterization of multilayer structures. In the present work, it is shown that depth selectivity of the techniques like, X-ray fluorescence, X-ray absorption spectroscopy and nuclear resonance fluorescence can be greatly enhanced by generating X-ray standing waves inside the multilayer structure. The concentration profiles of various elements can be obtained with a depth resolution of the order of 0.1 nm. Depth dependent information about the local structure around a given atom can be obtained from XAFS under standing wave conditions. It is demonstrated that detection of nuclear resonance fluorescence by tuning the energy of the incident X-rays to a Mössbauer transition can yield depth profile of a particular isotope, and can be used for self-diffusion studies. The techniques of X-ray reflectivity and conversion electron Mössbauer spectroscopy are used to provide useful complementary information.  相似文献   

12.
To investigate the initial growth of Fe films on Si(0 0 1) and the Fe/Si interface, Fe films at various thicknesses have been systematically studied by soft X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS). The Fe L edge XAS spectrum shows a strong thickness dependence with broader line-width for thinner films. Detailed analysis of the Fe absorption signal as a function of the thickness shows that the broad linewidth of Fe L edge XAS spectra is mostly contributed by the first Fe layer at the Fe/Si interface. In contrast to XAS, Fe 2p photoemission spectra for these films are identical. However, valence band photoemission also shows a strong thickness dependence. Comparing the valence band photoemission spectra of the thin Fe/Si(0 0 1) films with that of pure Si and the thickest Fe film, the difference spectra at all thicknesses show almost identical shape indicating the same origin: the Fe/Si interface. Thus, it is mainly the first Fe layer at Fe/Si layer that is reactive with the Si substrate changing its electronic structure.  相似文献   

13.
Soft-magnetic FeCo alloy nanoparticles with diameters less than 100 nm are prepared by ball milling. X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) are used to characterize these particles. While the XPS spectrum from the as-prepared sample clearly shows Co photoemission peaks, no sign of Fe is observed in the same spectrum. However, Fe photoemission peaks appear after 1 h of Ar ion sputtering. A quantitative analysis of the XPS spectra shows an increase of Fe concentration versus sputtering time until the Fe:Co ratio of the bulk alloy is reached. In addition, the narrow scan Fe and Co 2p XPS spectra show that Co is more oxidized than Fe. All these measurements indicate that the nanoparticles have a Co shell and an Fe-rich core. They further demonstrate the usefulness of XPS combined with depth-profiling via sputtering to obtain element- and chemically-sensitive structural information on nanoparticles. XMCD as an element-specific magnetic analysis tool further reveals that Fe and Co are ferromagnetically coupled in these particles. The information obtained is useful for establishing a structure–property relation for the studied material that is expected to have applications as a soft magnetic material at high temperatures.  相似文献   

14.
Photoemission from the 2p levels of the light metals excited by internally generated Kα1,2 X-rays has been observed, and the intensities compared with valence band to 2p intensity ratios obtained from X-ray photoemission spectroscopy. It is found that internal photoemission from the valence band contributes 0.5% of the intensity of the KL2,3M Auger peak.  相似文献   

15.
Threshold photoemission spectroscopy (TPES) is used to measure the Fe 2p spectrum of a stainless steel sample. The obtained spectrum is compared with analogous spectra measured by X-ray photoemission and absorption spectroscopies. The results of this comparison suggest that resonant two-electron autoionization processes, rather than direct photoemission from the core level, are the main mechanisms contributing to the signal. Limits and applicability of this experimental approach to investigate bulk electronic properties in solids are discussed.  相似文献   

16.
The epitaxial properties and structural relation between hexagonal InN and cubic In2O3 phases were studied by synchrotron X-ray scattering and X-ray photoelectron spectroscopy. The cubic bixbyite In2O3 phase on the sapphire(0001) substrate was formed after an annealing time of 10 min at 10−5 Torr after the hexagonal InN film was grown at 550 °C, above the dissociation temperature of InN, by RF-magnetron sputtering. The crystal orientation was cubic In2O3(222), parallel to Al2O3(0001) and parallel to hexagonal InN(0002) before the oxidation process. The cubic In2O3 phase was believed to be formed layer by layer by the oxidation of the hexagonal InN phase.  相似文献   

17.
Ni ions were implanted in bulk AlN with the goal to form embedded metallic clusters. Combining several characterisation techniques such as X-ray absorption spectroscopy, X-ray diffraction and high resolution transmission electron microscopy, we determined the lattice parameter of the Ni clusters that display a fcc crystalline structure. The average size increases when the ion fluence is increased or after a thermal treatment. Thanks to moiré fringes observed by high resolution transmission electron microscopy and to satellite peaks seen on the diffraction patterns, we concluded that the annealed Ni clusters orientate their (002) planes on the (101) of AlN. Moreover, the satellite positions allowed us to calculate Ni cluster average diameters, that are in agreement with average sizes deduced by X-ray absorption spectroscopy. Received 25 August 1999 and Received in final form 8 February 2000  相似文献   

18.
Summary of Part I: The detection of X-rays by photographic recording, ionization chambers, proportional counters, scintillation counters, and semiconductor detectors is discussed. The extraordinary improvement in resolution achieved by semiconductor detectors resulted in a new powerful analytical method: detection of characteristic X-rays. Sample excitation, by X-rays, by charged particles produced by accelerators and by radioactive sources, is discussed. Charged particle induced X-ray emission is described within B framework of simple theoretical models. Experimental data on yields of X-rays produced by proton and heavy ion bombardment of different targets are summarized. The cross sections for the production of X-rays in ion-atom collisions are large. This allows the detection of elements present in very small amounts within the target, as well as the measurement of the charge of particles using beam foil spectroscopy.

Part II of this article will describe some applications of X-ray emission spectroscopy in industry, water and air pollution, and in the study of the importance of trace elements in biology and medicine. Sensitivity, background problems, target preparation and data reduction for X-ray emission spectroscopy will be discussed.  相似文献   

19.
Describes a series of experiments performed to isolate the RF breakdown mechanisms in the hard tube magnetically insulated transmission line oscillator (MILO) Experiment at the Air Force Phillips Laboratory, Albuquerque, NM. Specifically, several causes of RF breakdown in the region of the vacuum-air interface and the antenna region have been investigated. These causes are X-ray induced electron emission, VUV and visible photoemission of electrons, and breakdown due to large field stresses in the antenna. Each of these mechanisms has the effect of liberating electrons from a surface in a high field region which then are a seed for a breakdown. This paper discusses measurements in the X-ray, VUV, and visible regimes with support from computer simulation. Also, imagery results are shown, which in conjunction with the computer work, point to the presence of high electric field stresses in the antenna, which cause a subsequent breakdown. In particular, X-rays, VUV, visible light, and plasmas do not seem to be the major source of RF breakdown in this tube  相似文献   

20.
The photoreflectance (PR) spectroscopy has been applied to investigate the band-gap energy (Eg) of indium nitride (InN) thin films grown by rf magnetron sputtering. A novel reactive gas-timing technique applied for the sputtering process has been successfully employed to grow InN thin films without neither substrate heating nor post annealing. The X-ray diffraction (XRD) patterns exhibit strong peaks in the orientation along (0 0 2) and (1 0 1) planes, corresponding to the polycrystalline hexagonal-InN structure. The band-gap transition energy of InN was determined by fitting the PR spectra to a theoretical line shape. The PR results show the band-gap energy at 1.18 eV for hexagonal-InN thin films deposited at the rf powers of 100 and 200 W. The high rf sputtering powers in combination with the gas-timing technique should lead to a high concentration of highly excited nitrogen ions in the plasma, which enables the formation of InN without substrate heating. Auger electron spectroscopy (AES) measurements further reveal traces of oxygen in these InN films. This should explain the elevated band-gap energy, in reference to the band-gap value of 0.7 eV for pristine InN films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号