首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
Three Cu/ZnO/ZrO2/Al2O3 methanol reforming catalysts were investigated using X-ray photoelectron spectroscopy (XPS). The catalysts which contained ZrO2 from a monoclinic nanoparticle ZrO2 precursor exhibit both a higher activity toward the methanol steam reforming reaction and a lower CO production rate compared to catalysts composed of an XRD-amorphous ZrO2 produced by impregnation using a Zr(NO3)2 precursor. The presence of a monoclinic phase appears to result in an increased charge transfer between the Zr and Cu species, as evidenced by a relatively electron-rich ZrO2 phase and a partially oxidized Cu species on reduced catalysts. This electron deficient Cu species is more reactive toward the methanol reforming reaction and partially suppresses CO formation through the reverse water gas shift or methanol decomposition reactions.  相似文献   

2.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

3.
The adsorption of oxygen on polycrystalline and thin film copper samples was studied with the solid state electrochemical cell: Cu,Cu2O¦7.5wt%CaO/ZrO2¦Cu in ultrahigh vacuum. The oxygen partial pressure in the bulk of the copper sample was controlled electrochemically by applying a voltage across the cell, while the oxygen coverage at the copper free surface was monitored by Auger Electron Spectroscopy (AES). This technique has enabled us to establish much lower oxygen partial pressures at high temperatures than normally attainable in ultrahigh vacuum. In this paper we report the results of reversible oxygen adsorption isotherms on polycrystalline copper at 928, 970 and 1093 K. The results agree reasonably well with the deductions of earlier surface energy measurements and indicate a surprising degree of stability for chemisorbed oxygen on polycrystalline copper. Isosteric heats of adsorption are calculated with and without the inclusion of the earlier surface energy measurements and are compared to previous differential heats of adsorption determined calorimetrically.  相似文献   

4.
This study focused on preparation of tungsten oxide supported on zirconia by thermal spreading. The prepared samples were characterized by infrared spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray diffraction, and also by methanol dehydration reaction. It was observed that isolated octahedral tungsten dispersed species and dispersed polytungstate were formed on zirconia surface, although some WO3 that remained after the thermal treatment could also be detected. The presence of these species led to an increase of the number of Lewis sites and the generation of Brönsted acid sites. High calcination temperatures promoted the creation of Brönsted sites as a consequence of polytungstate species formation. The activity on methanol dehydration was also determined by the concentration of these species, whereas the isolated WOx species were found poorly active. The correlation observed between the catalytic performance and the tungsten dispersed species, as revealed by spectroscopic techniques, evidenced the occurrence of thermal spreading of WO3 on ZrO2. The results presented in this work show that WO3 thermal spreading on ZrO2 may be effectively accomplished as predicted by thermodynamics.  相似文献   

5.
The adsorption of hydrogen on Pt (100) was investigated by utilizing LEED, Auger electron spectroscopy and flash desorption mass spectrometry. No new LEED structures were found during the adsorption of hydrogen. One desorption peak was detected by flash desorption with a desorption maximum at 160 °C. Quantitative evaluation of the flash desorption spectra yields a saturation coverage of 4.6 × 1014 atoms/cm2 at room temperature with an initial sticking probability of 0.17. Second order desorption kinetics was observed and a desorption energy of 15–16 kcal/mole has been deduced. The shapes of the flash desorption spectra are discussed in terms of lateral interactions in the adsorbate and of the existence of two substates at the surface. The reaction between hydrogen and oxygen on Pt (100) has been investigated by monitoring the reaction product H2O in a mass spectrometer. The temperature dependence of the reaction proved to be complex and different reaction mechanisms might be dominant at different temperatures. Oxygen excess in the gas phase inhibits the reaction by blocking reactive surface sites. At least two adsorption states of H2O have to be considered on Pt (100). Desorption from the prevailing low energy state occurs below room temperature. Flash desorption spectra of strongly bound H2O coadsorbed with hydrogen and oxygen have been obtained with desorption maxima at 190 °C and 340 °C.  相似文献   

6.
UV-vis spectra, XRD, H2-TPR, TEM and ESR were used to characterize a series of Cu/γ-Al2O3 catalysts, which were prepared by incipient wetness impregnation using copper nitrate, copper acetate or copper sulfate as precursors, to study the role of Cu species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction. It was found that the mixture of CuO phase and CuAl2O4 phase formed on various Cu/γ-Al2O3 catalysts, and the Cu species and dispersion had significant influence on the Cu/γ-Al2O3 activity. Highly dispersed CuO phase on the support would be related with its high activity for the NH3-SCO reaction.  相似文献   

7.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

8.
The chemisorption, condensation, desorption, and decomposition of methanol, both CH3OH and CH3OD, on a clean Ni(110) surface have been characterized using high resolution electron energy loss spectroscopy, temperature programmed reaction spectroscopy, and low energy electron diffraction. The vibrational spectrum of the saturated chemisorbed layer, 7.4 × 1014 molecules cm?2, is almost identical to the infrared spectrum of liquid or solid methanol. Condensation of multilayers of methanol is facile at 80 K. The only quasi-stable intermediate isolated during the decomposition is a methoxy species, CH3O, which decomposes thermally to CO and H. The evolution of both CO and H2 occurs in desorption limited processes.  相似文献   

9.
利用X-射线光电子能谱(XPS)和程序升温脱附谱(TPD)研究了三甲基镓在Pd(111)表面的吸附和解离行为,并考察了表面预吸附H和O的影响。结果表明,在吸附温度为140 K时,三甲基镓在Pd(111)上主要为解离吸附,此时表面物种为Ga(CH3xx=1,2,3)和CHx物种。加热将导致Ga的甲基化合物中的Ga-C键发生分步断裂,在不同温度下产生CH4和H2从表面脱附。同时,XPS结果证实了在275~325 K的温度区间内存在Ga甲基化合物的分子脱附。退火至更高温度,表面只观察到积碳和金属Ga物种,这二者随着温度的继续升高逐渐向体相扩散。在Pd(111)表面预吸附O和H对上述吸附和解离行为存在显著的影响。当表面预吸附H时,脱附产物CH4和H2的脱附主要位于315 K,可归属为一甲基镓的解离脱附。当表面预吸附O时,只在258 K观察到CH4和H2的脱附峰,可能来自于Pd-O-Ga(CH32吸附结构的解离.  相似文献   

10.
A series of polyimide/zirconia (PI/ZrO2) hybrid films were synthesized based on zirconium n-butoxide, pyromellitic acid dianhydride (PMDA) and 4,4′-oxydianiline (ODA) by a sol-gel process. The atomic oxygen (AO) exposure tests were carried out using a ground-based atomic oxygen effects simulation facility. The effects of ZrO2 content on the morphology and structure evolvement of PI/ZrO2 hybrid films were investigated using field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectrometer (XPS), respectively. The results indicated that a zirconia-rich layer was formed on the polyimide film sourcing from the zirconium n-butoxide after AO exposure, which decreased the erosion rate and obviously improved the AO resistance of polyimide films.  相似文献   

11.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

12.
The adsorptions of different gases (CO, H2 and O2) in the hydrogen-rich gas on the co-precipitated Cu-Zr-Ce-O catalyst were discussed and the active sites were ascertained with infrared spectroscopy technique. It was shown that the adsorption strength of CO was stronger than that of O2 or H2. Hydrogen and CO were competitive adsorption and the coexistence H2 and CO on the surface accelerated the rate of CO desorption. Adsorbed H2 could convert into geminal OH groups on the ceria surface at high temperatures in the absence of oxygen, while it was easy to form surface hydroxyl groups at low temperatures and condensed to physical water with increasing desorption temperature in the existence of oxygen. The adsorption of CO2 was strong and it could transform into thermal stable carbonate species even in the reaction conditions. The active sites of the Cu-Zr-Ce-O catalyst were Cu2+ and Cu+, mainly the latter. The oxygen defect sites could be formed on the Cu-Zr-Ce-O catalyst surface through dehydration and decarboxylation.  相似文献   

13.
UV photoemission spectroscopy (UPS) with He I and He II radiation is used to study the interaction of C2H4 with clean and oxygen precovered Cu(110) surfaces at 90 K. On the clean surface only-bonding of the C2H4 molecules is observed whereas preadsorbed oxygen causes a second molecular orbital to be involved in the chemisorption. This result is consistent with the differing behaviour of the work function change during thermal desorption of C2H4.  相似文献   

14.
This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide.  相似文献   

15.
K Krishan  D V Natarajan  B Purniah 《Pramana》1988,31(4):L327-L335
In this paper the kinetics of oxygen desorption from Y Ba2Cu3O7-δ has been investigated and measurements carried out in the temperature range 350–750 C. It is shown that the oxygen desorption is diffusion-controlled (and not surface-controlled), and characteristic of diffusion from small grains in a loosely coupled porous matrix. At every temperature a number of time constants with well-defined ratios appear and have been identified and measured. These time constants can be related to the average bulk diffusion constant which shows an Arrhenius behaviour with deviations around 750°C which are ascribed to the well-known orthorhombic to tetragonal transition. In this paper we establish the basic underlying physical mechanism of oxygen desorption in Y Ba2Cu3O7-δ.  相似文献   

16.
Composite materials (CMs) based on zirconia xerogels and powdered cellulose (PC) were synthesized. The effect of the CM surface charge on their complexing properties with respect to Cu2+ ions and on the catalytic activity of the samples in model reactions of the decomposition of H2O2 and the oxidative dehydrogenation of trimethylhydroquinone with atmospheric oxygen was analyzed. It was experimentally proved that the use of PC for the synthesis of ZrO2-based CMs, as in the case of previously studied CMs based on SiO2 and TiO2, leads to an increase in the specific surface area S sp and a decrease in the negative electric potential of their surface. The surface charge, sorption method, and the composition of the buffer solution used for sorption have a significant effect on the copper(II) content in the CM phase, the distribution pattern, and the composition of the sorbed copper(II) compounds and on the catalytic activity of the synthesized Cu2+-containing CMs.  相似文献   

17.
The adsorption of hydrogen on a clean Cu10%/Ni90% (110) alloy single crystal was studied using flash desorption spectroscopy (FDS), Auger electron spectroscopy (AES), and work function measurements. Surface compositions were varied from 100% Ni to 35% Ni. The hydrogen chemisorption on a-surface of 100% nickel revealed strong attractive interactions between the hydrogen atoms in accordance with previous work on Ni(100). Three desorption states (β1, β2 and α) appeared in the desorption spectra. The highest temperature (α) state was occupied only after the initial population of the β2-state. As the amount of copper was increased in the nickel substrate, desorption from the higher energy binding α-state was reduced, indicating a decrease in the attractive interactions among hydrogen atoms. The hydrogen coverage at saturation was not affected by the addition of copper to the nickel substrate until the copper concentration was greater than 25% at which a sharp reduction in saturation coverage occurred. This phenomenon was apparently due to the adsorption of hydrogen on Ni atoms followed by occupation of NiNi and CuNi bridged adsorption sites, while occupation of CuCu sites was restricted due to an energy barrier to migration.  相似文献   

18.
Hydrogen absorption and emission characteristics of Pt-Li2ZrO3 bi-layer materials exposed to normal air at room temperature have been studied by means of elastic recoil detection analysis(ERD), Rutherford backscattering spectroscopy (RBS), weight gain measurement (WGM) and thermal desorption spectroscopy (TDS). The Pt/Li2ZrO3/Pt sandwich specimens have been found to absorb H at the Pt surface from H2O vapor, store it in Li2ZrO3, and emit 80% of it as H2 gas, when they are heated at 100 °C for 10 min. Data obtained by WGM shows that the weight gain increases linearly with increasing the exposure time. TDS analysis also shows that the main species of gases re-emitted are H2 and H2O. Moreover, the hydrogen storage rate in Li2ZrO3 is shown to be controlled by the hydrogen absorption rate at the Pt surface, based on the hydrogen absorption and storage model proposed. The maximum storage capacity of Li2ZrO3 has been estimated to be 0.15 Nl/cm3 from the saturation hydrogen concentration, (1/2)H/Li2ZrO3, measured by means of the ERD technique.  相似文献   

19.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition.  相似文献   

20.
Formate (HCOO) synthesis, decomposition and the hydrogenation of carbonate (CO3) on Cu overlayers deposited on a Pt(1 1 1) single crystal are investigated to examine the reactivity of a Cu surface under tensile strain with defects present.Formate is synthesized from a 0.5 bar mixture of 70% CO2 and 30% H2 at varying temperatures, and the evolution is followed with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). Subsequent TPD reveals decomposition of the formate species into CO2 and H2 at 420 ± 5 K for strained Cu at sub-monolayer to monolayer coverages. This is a significantly lower decomposition temperature than obtained earlier on pristine Cu(1 1 1) (460 K), as well as for thicker Cu layers where we assign an observed decomposition peak at 440 ± 5 K to relaxed, but defect-rich Cu(1 1 1). However, the thermal stability of formate on strained and defect-rich Cu is similar to previous results obtained for supported, and lattice-strained, Cu nanoparticles.The hydrogenation of carbonate produced by 0.3 bar CO2 exposure at room temperature was monitored with XPS and TPD showing a significant loss of carbonate when subjected to 0.2 bar H2 at room temperature. However, the presence of formate on the surface, or any other hydrogenation product, could not be established during or after H2 exposure by PM-IRRAS, EELS or TPD. Even so, the results suggest that carbonate and its hydrogenation may constitute a relevant pathway to methanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号