首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
F. Solymosi  J. Kiss 《Surface science》1981,108(2):368-380
The adsorption and surface reaction of cyanogen on clean and oxygen covered Cu(111) have been investigated. From electron energy loss measurements, thermal desorption spectroscopy and electron beam effects in Auger spectroscopy, it is proposed that cyanogen adsorbs dissociatively on Cu(111) at 300 K. The activation energy for the desorption was calculated to be 180 kJ/mol. Cyanogen adsorption onto oxygen predosed Cu(111) is inferred to produce the NCO surface species. This interpretation was aided by data of electron energy loss measurements and from HNCO adsorption onto Cu(111) at 300 K. A reaction began in the co-adsorbed layer above 400 K, yielding CO2 and N2.  相似文献   

2.
Density functional theory (DFT) calculations are performed for the adsorption energy of hydrogen and oxygen on graphene decorated with a wide set of metals (Li, Na, K, Al, Ti, V, Ni, Cu, Pd, Pt). It is found that oxygen interferes with hydrogen adsorption by either blocking the adsorption site or by the irreversible oxidation of the metal decoration. The most promising decorations are Ni, Pd, and Pt due to a reasonable relationship of adsorption energies which minimize the oxygen interference. The DFT results are used to parametrize a statistical mechanical model which allows evaluation of the effect of partial pressures in the gas phase during storage. According to this model, even in the most promising case, it is necessary to reduce the oxygen partial pressure close to ultrahigh vacuum conditions to allow hydrogen storage.  相似文献   

3.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

4.
The very low pressure adsorption kinetics of H2S on the clean and oxygen covered Cu(110) face have been examined by Auger Electron Spectroscopy (AES) and Mirror Electron Microscopy (MEM, used for continuous surface potential variations of the copper surface). The AES experimental curves on the clean copper face have been interpreted using a model of island growth by surface diffusion. The presence of an adsorbed oxygen layer on the copper surface changes notably the induction times observed on both AES and MEM measurements.  相似文献   

5.
Electron energy loss spectroscopy (ELS) with primary energies e0 ? 80 eV has been performed on ultrahigh vacuum (UHV) cleaved nonpolar (11?00) and polar zinc (0001) and oxygen (0001?) surfaces of ZnO to study the adsorption of oxygen and carbon monoxide. Except for CO on the nonpolar surface where no spectral changes in ELS are observed a surface transition near 11.5 eV is strongly affected at 300 K on all surfaces by CO and O2. At 300 K clear evidence for new adsorbate characteristic transitions is found for oxygen adsorbed on the Zn polar surface near 7 and 11 eV. At 100 K on all three surfaces both CO and O2 adsorb in thick layers and produce loss spectra very similar to the gas phase, thus indicating a physisorbed state.  相似文献   

6.
The interaction of oxygen with polycrystalline copper and titanium surfaces was studied by means of photoemission electron microscopy. Variations in the image brightness were used to determine the work function of different Cu crystallites. The change of the work function was monitored during oxygen adsorption on both, Cu and Ti. Those changes are smooth for Cu whereas different Ti crystallites exhibit a rather complicated behavior during oxygen adsorption. The transformation of brightness versus exposure curves into work function versus coverage curves allows to determine the initial dipole moment of the adsorbed oxygen atoms. A value of about 20 mD was found for O on Cu(1 1 0). Variations of the initial sticking probability of oxygen on different copper crystallites were directly mapped.  相似文献   

7.
Reflection-absorption infrared spectroscopy has been combined with thermal desorption and surface coverage measurements to study nitrogen adsorption on a {111}-oriented platinum ribbon under ultrahigh vacuum conditions. Desorption spectra show a single peak (at 180 K) after adsorption at 120 K, giving a coverage-independent activation energy for desorption'of ~40 kJmol?1. The initial sticking probability at this temperature is 0.15, and the maximum uptake was ~1.1 × 1014 molecule cm?2. The adsorbed nitrogen was readily displaced by CO, h2 and O2. An infrared absorption band was observed with a peak located at 2238 ± 1 cm?1, and a halfwidth of 9 cm?1, with a molecular intensity comparable to that reported for CO on Pt{111}. The results are compared with data for chemisorption on other group VIII metals. An earlier assignment of infrared active nitrogen to B5 sites on these metals is brought into question by the present results.  相似文献   

8.
The infrared spectrum of chemisorbed α-CO on polycrystalline tungsten has been studied using ultrahigh vacuum techniques. The α-CO state has been spectroscopically resolved into two states, designated α1-CO (wavenumber ~2128 cm?1) and α2-CO (wavenumber ~2090 cm?1). α2-CO adsorbs predominantly in the first stages of α-CO adsorption; α1-CO forms primarily at high α-CO coverages at the partial expense of α2-CO. α1-CO is found to desorb at a slightly lower temperature than α2-CO. Both α-CO states are postulated to involve sp-hybridized carbon which is bonded to the tungsten surface. These states have previously been detected in electron impact desorption measurements, where α1-CO was shown to liberate CO+ and α2-CO to liberate O+.  相似文献   

9.
M.S. Chen 《Surface science》2007,601(23):5326-5331
Studies show that the rate of CO oxidation on Pt-group metals at temperatures between 450 and 600 K and pressures between 1 and 300 Torr increases markedly with an increase in the O2/CO ratio above 0.5. The catalytic surfaces, formed at discrete O2/CO ratios >0.5, exhibit rates 2-3 orders of magnitude greater than those rates observed for stoichiometric reaction conditions and similar reactant pressures or previously in ultrahigh vacuum studies at any reactant conditions and extrapolate to the collision limit of CO in the absence of mass transfer limitations. The O2/CO ratios required to achieve these so-called “hyperactive” states (where the reaction probabilities of CO are thought to approach unity) for Rh, Pd, and Pt relate directly to the adsorption energies of oxygen, the heats of formation of the bulk oxides, and the metal particle sizes. Auger spectroscopy and X-ray photoemission spectroscopy reveal that the hyperactive surfaces consist of approximate 1 ML of surface oxygen. In situ polarization modulation reflectance absorption infrared spectroscopy measurements coupled with no detectable adsorbed CO. In contrast, under stoichiometric O2/CO conditions and similar temperatures and pressures, Rh, Pd, and Pt are essentially saturated with chemisorbed CO and exhibit far less activity for CO oxidation.  相似文献   

10.
J.S. Tsay  Y.S. Chen 《Surface science》2006,600(18):3555-3559
Adsorption of oxygen on ultrathin Co/Ir(1 1 1) films thinner than 4 monolayers in an ultrahigh vacuum environment was studied. For oxygen adsorption on cobalt films, the complex adsorption kinetics emerges partly due to the incorporation of oxygen. The amount of oxygen adsorbed at the surfaces is higher than that incorporated into the film as revealed from sputter profiling measurements. At room temperature the CoO layer exhibits paramagnetism and could not contribute to the remanent Kerr intensity. As oxygen exposure increases, the reduction of the Kerr intensity is due to the reduction of the effective layer for the magnetic measurements. Compared with oxygen saturated cobalt films, the concentration of adsorbed oxygen per Co atom shows an oscillatory behavior. A compositional anomaly of a great amount of adsorbed oxygen in submonolayer Co coverage occurs because of the maximized number of adsorption and incorporation sites for oxygen on the surface. A larger charge transfer between Co and oxygen was observed for thinner Co overlayers as revealed from the larger chemical shifts of Auger lines.  相似文献   

11.
Alumina-supported mixed bimetallic Rh-V thin films, with the overall thickness of 0.8 ML, were prepared under the ultrahigh vacuum (UHV) conditions and characterized with respect to their electronic and CO adsorption properties. X-ray photoelectron spectroscopy (XPS) was utilized to characterize electronic changes accompanying bimetallic Rh-V interaction and interaction between metal and polycrystalline γ-Al2O3 substrate. The chemisorption properties were probed by temperature-programmed desorption spectroscopy (TPD) of CO molecules. The electronic and chemisorption properties of the mixed layers were compared with pure Rh and V layers grown on the same γ-Al2O3 substrate and with a model bimetallic Rh-V system prepared by V deposition on a polycrystalline Rh foil. By varying the preparation conditions, we observed a strong dependence of the studied properties on the position of the V atoms. The presence of V atoms on the surface led to a fast deactivation, while vanadium presented under the surface resulted in a weakening of CO-metal surface bond, a change in the proportion of the adsorption side species, and an increase of CO dissociation.  相似文献   

12.
Thin epitaxial films of palladium were grown on epitaxial copper films and cleaved mica in ultra high vacuum. The growth modes of these films were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), transmission electron microscopy (TEM), and TEM replica techniques. Layer by layer growth of Pd on Cu and mica was observed and inelastic mean free paths of Auger electrons for energies of 60 eV (Cu MMM) and 329 eV (Pd MNN) were calculated. These values were 5.7 and 6.9 Å respectively. The thermal stability of monocrystalline and polycrystalline Pd/Cu bilayer films at 483 K was also investigated by AES and TEM. It was found that Pd agglomerates on the Cu at this temperature to form a Stranski-Krastanov growth morphology. The agglomeration is much more rapid on polycrystalline films, suggesting that high surface diffusivity paths (grain boundaries and possibly other defects) enhance the surface diffusion of Pd on Cu.  相似文献   

13.
A detailed study of CO adsorption on Ni(100) utilizing static SIMS and a comparison of the data with surface coverage data from the literature shows that there is a linear relationship between CO coverage and the peak intensity ratios (MCO+/M+ and M2CO+/M+2) of the CO-containing secondary ions, in the region of coverage below which the adlayer becomes compressed. Adsorption isobares were obtained using the intensity ratios and from these, adsorption isosteres were derjved to give heats of adsorption as a function of coverage. These data are in very close agreement with the literature. Confirmatory data were obtained for this relationship for CO adsorption on polycrystalline Ni, Pd, Pt and Cu and Cu(100). The application of this technique of surface coverage measurements to a study of the extent to which H2S coadsorption reduces the coverage of adsorbed CO on Ni(110), (100) and (111) shows that these faces are poisoned in the order (100) > (111) > (110). Surface coverage measurements on the non-closepacked (110) face are affected by the apparent insensitivity of SIMS to adsorbates located in the “channels”.  相似文献   

14.
The surfaces of polycrystalline Cu, Au-coated Cu, Si(1 0 0) and of Si(1 0 0) coated with 1.5 monolayer Cu were investigated with positron annihilation induced Auger-electron spectroscopy (PAES). Since the electron background has been reduced considerably we observed the Cu M2,3VV-Auger transition on a copper surface within only three hours which is the shortest acquisition time reported so far for PAES. In order to demonstrate PAES’ high potential the Auger-yield, the signal-to-background ratio as well as the surface selectivity were compared with accompanying EAES-measurements quantitatively. A more efficient electron energy analyzer for the present PAES setup would lead to an additional efficiency gain of more than two orders of magnitude. The presented measurements were performed at the low-energy positron beam of high intensity NEPOMUC at the research reactor FRM II.  相似文献   

15.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed.  相似文献   

16.
We have performed contact potential difference measurements on low-index faces of copper in ultrahigh vacuum using positrons as positive test particles in a retarding field analyzer. For negative positron affinity surfaces bombarded with keV positrons we also measured energy distributions of reemitted slow positrons and found them to sharply peaked in energy about a value which we label ?φ+. Both adsorbing sulfur on a Cu(111) sample and raising its temperature cause changes in φ+ which are equal and opposite to the contact potential change of the sample, i.e. the electron workfunction change. This result is in complete accordance with φ+ being a measure of the negative positron workfunction of the sample and high temperature or adsorbates inducing a change only in the electrostatic surface dipole layer.  相似文献   

17.
Single-molecular switching phenomena in monolayer arrays of subphthalocyanine adsorbed on Cu(1 0 0) surface were investigated by scanning tunneling microscopy (STM) under ultrahigh vacuum. The molecules evaporated on the surface arranged in a square lattice taking the Cu(1 0 0)SubPc(5 × 5) epitaxy. During continuous STM imaging at fixed tunneling conditions the topography of the individual molecules spontaneously changed between the high and low states. This topographic change was attributed to orientational switching between the upward and downward adsorption of the axial Cl atom of the molecule on the Cu surface. Molecular energy calculations and statistical thermodynamic evaluation concluded that the tip-triggered disturbance in the close-packed molecular array induced the molecular rearrangement accompanied with the stochastic orientational switching.  相似文献   

18.
The atomic structure of thin (7–20 Å) copper iodide layers formed on the Cu(110) surface during a chemical reaction with molecular iodine in ultrahigh vacuum has been studied with scanning tunneling microscopy. A double stripe superstructure with an average period of 90–100 Å was found on the surface of CuI. The structural model is proposed for the copper iodide surface taking into account the contraction of the CuI lattice and the formation of striped domain walls.  相似文献   

19.
The surface composition of two Pt/Sn alloys, viz. PtSn and Pt3Sn, has been followed by means of AES, as a function of annealing in ultrahigh vacuum, oxygen chemisorption and reduction with hydrogen.The results, which were quantitatively interpreted with the aid of a novel calibration technique, reveal the following features: - The surface of PtSn and Pt3Sn becomes enriched with tin by annealing in vacuum. Ultimate values of 68±5 at% Sn for PtSn and 41±5 at% Sn for Pt3Sn were attained after annealing at 500°C. - The adsorption of oxygen on the annealed surface of PtSn and Pt3Sn causes a further enrichment with tin, while severe oxidation of PtSn at 500°C leads to complete disappearance of Pt from the surface. - Oxygen is more strongly and differently bound on a surface containing about 40 at% Sn than on a surface containing about 70 at% Sn. Activated adsorption of oxygen takes place only on the latter. The results suggest the formation of SnO2 surface complexes on the exposed surface of Pt3Sn. - Reduction of the alloys at 500°C carries the excess of tin into the bulk and reduces its surface concentration to 35±5 at% for Pt3Sn and 64±5 at% for PtSn, which is an enrichment of the surface with platinum relative to the annealed state.  相似文献   

20.
The adsorption of SO2 on Ag(110) and the reaction of SO2 with oxygen adatoms have been studied under ultrahigh vacuum conditions using low energy electron diffraction, temperature programmed reaction spectroscopy and photoelectron spectroscopy. Below 300 K, SO2 adsorbs molecularly giving p(1×2) and c(4×2) LEED patterns at coverages of one half and three quarter monolayers. respectively. At intermediate coverages, streaked diffraction patterns, similar to those reported for noble gas and alkali metal adsorption on the (110) face of face-centered cubic metals were observed, indicating adsorption out of registry with the surface. A feature at low binding energy in the ultraviolet photoemission spectrum appeared which was assigned to a weak chemisorption bond to the surface via the sulfur, analogous to bonding observed in SO2-amine charge transfer complexes and in transition metal complexes. SO2 exhibited three binding states on Ag(110) with binding energies of 41, 53 and 64 kJ mol?1; no decomposition on clean Ag(110) was observed. On oxygen pretreated Ag(110), SO2 reacted with oxygen adatoms to form SO3(a), as determined by X-ray photoelectron spectroscopy. Reacting preadsorbed atomic oxygen in a p(2 × 1) structure with SO2 resulted in a c(6 × 2) pattern for SO3(a). The adsorbed SO3(a) decomposed and disproportionated upon heating to 500 K to yield SO2(g), SO4(a) and subsurface oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号