首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Biaxially textured yttria stabilized zirconia (0 0 1) thin films were fabricated on untextured hastelloy substrates by ion beam assisted deposition method. The effects of assisting beam current density Ja and sputtering beam current density Js on the textures of the films were studied. The results indicate that as Ja or Js increase, both the out-of-plane and the in-plane textures are improved initially, and then degrade. The results can be attributed to anisotropic damage and selective sputtering effect of assisting ions. At the same ion-to-atom arrival ratio r, which is reflected with Ja/Js value, lower deposition rate can enhance the biaxial texture.  相似文献   

2.
The effect of magnesium oxide (MgO) surface conditions on in-plane grain orientation and critical current density of epitaxial YBa2Cu3O7 (YBCO) films was systematically investigated. The MgO substrates were either “as received” or stored for some time, cleaned using different methods and lithographically prepared for our step-edge junction devices. The YBCO films were grown via reactive thermal co-evaporation by Theva, GmbH. The surface characterisation of MgO substrates was studied using X-ray photoelectron spectroscopy (XPS). The in-plane grain orientation of the YBCO films was studied by means of X-ray diffraction (XRD) φ-scan and the critical current density was measured for the XRD scanned samples. The surface condition of the MgO substrates was found to have a strong influence on the in-plane grain orientation and the critical current density of the YBCO films. The MgO substrates with a degraded or contaminated surface gave rise to 45° grain misorientation in YBCO films and reduced the critical current density. A final process step using a low energy Ar ion beam etching (IBE) of the MgO substrates prior to the YBCO film deposition was found effective in removing the in-plane grain misorientation and promoting the growth of perfectly aligned c-axis YBCO films.  相似文献   

3.
MgO ultrathin films were grown on Si(1 0 0) substrates as buffer layers for the growth of ferroelectric BaTiO3 thin films by laser molecular beam epitaxy (L-MBE). The deposition process of MgO buffer layers grown on silicon was in situ monitored by reflection high-energy electron diffraction (RHEED). The structure of BaTiO3 films fabricated on MgO buffers was investigated by X-ray diffraction. Biaxially textured MgO was obtained at high laser energy density, but when the laser energy was lowered, MgO buffer was transformed to the form of texture with angular dispersion with the increase of the film thickness. BaTiO3 films grown on the former buffer were completely (0 0 1) textured, while those on the latter were (0 0 1) preferred orientated. Furthermore, the fabricated MgO buffers and BaTiO3 films had atomically smooth surface and interface. All these can reveal that the quality of textured MgO buffer is a key factor for the growth of BaTiO3 films on silicon.  相似文献   

4.
Hydrophilic Ag nanostructures were synthesized by physical vapour deposition of 5 nm Ag thin films followed by irradiation with 1.5 keV Ar atoms. Optical absorbance measurements show a characteristic surface plasmon resonance absorption band in visible region. A blue-shift in absorbance from 532 to 450 nm is observed with increasing fluence from 1 × 1016 to 3 × 1016 atoms/cm2. Atomic force microscopy was performed for the pristine and irradiated samples to study the surface morphology. The atom beam irradiation induced sputtering and surface diffusion lead to the formation of plasmonic surface. Rutherford backscattering spectroscopy of the pristine and irradiated film indicates that metal content in the film decreases with ion fluence, which is attributed to the sputtering of Ag by Ar atoms. The contact angle measurement demonstrates the possibility of engineering the hydrophilicity by atom beam irradiation.  相似文献   

5.
In this work, SmCo5 thin films are deposited on single crystal MgO (1 0 0) and amorphous glass substrates with a Cr underlayer at 400 °C by sputtering. A comparison study shows that the microstructures and magnetic properties are different in the two SmCo5 films on the MgO (1 0 0) and glass substrates, respectively. An epitaxial growth of Cr-(2 0 0)〈1 1 0〉/SmCo5-(1 1 2¯ 0)〈0 0 0 1〉 is achieved on the MgO (1 0 0) single crystal substrate with an average grain size of 20 nm for SmCo5. On the amorphous glass substrate, no significant crystallographic texture is found in the Cr underlayer. After the deposition of SmCo5, a weak texture of (1 1 2¯ 0) is observed with an average grain size of 8 nm. High remanence ratio value in this film is probably due to strong exchange coupling. Both SmCo5 films show high in-plane coercivity, high in-plane anisotropy and remanence enhancement.  相似文献   

6.
The irradiation effect of 1 MeV C+ on the interface and magnetic anisotropy of epitaxial Cu/Ni system with a perpendicular magnetic anisotropy was investigated by using magneto-optical Kerr effects, grazing incident diffraction and X-ray reflectivity. The magnetic easy-axis was altered from the direction along the surface normal to in-plane and the strain in the Ni layer was relaxed after ion irradiation. Though the interface between the top Cu layer and the Ni layer becomes rough, the contrast of electron densities of Cu and Ni layer increases and the grain-growth occurs during ion irradiation. These phenomena arise from thermo-chemical driving force, i.e. heat of formation, which may be a crucial factor in determining the interface shape in the case of indirect energy transfer mechanism. Therefore, the change of the magnetic anisotropy of the Ni/Cu system after ion irradiation is not due to the formation of the intermixed layer at the interface. The ion irradiation effects on the grain-growth and enhancement of the electronic contrast between Ni and Cu are explained by the interfacial atomic movement caused by thermo-chemical driving force.  相似文献   

7.
The (1 0 0) SrTiO3 substrate has emerged as the oxide substrate of choice for the deposition of a wide variety of materials. The substrate's unavoidable miscut leads to a step-terrace morphology when heated to high temperatures. This morphological transition is accompanied by an atomic scale repositioning of the uppermost terrace atoms, the nature of which is strongly dependent on the substrate temperature and ambient atmosphere used. Here, we report the deposition of CdTe films on the as-received and reconstructed surfaces of (1 0 0) SrTiO3. The as-received substrate gives rise to a [1 1 1] CdTe film with four equally distributed in-plane grain orientations. The surface reconstruction, on the other hand, gives rise to an unprecedented reorientation of the film's grain structure. For this case, a [2 1 1] CdTe film emerges having twelve unevenly distributed in-plane orientations. We attribute the film's grain structure to an atomic scale surface reconstruction, with the anisotropic distribution of grain-types arising from a preferential formation due to the step edges.  相似文献   

8.
Estimation of temperature rise during focused ion beam irradiation is of immense importance, since it affects various processes related to micro-machining and deposition. When ion beam impinges on a surface, it transfers its kinetic energy by way of electronic excitations and collisions, which eventually gets converted in the form of heat leading to rise in local temperature. This temperature rise affects and governs the properties of the machined region. The temperature rise can be calculated on the basis of energy deposition and heat transfer. However, there are very few reports on the measurement of such local temperature rise which lasts for very short time. We have designed and fabricated nanothermocouples of Pt-W to monitor local temperature rise (i) near a microheater and (ii) in the close proximity of an intense focused ion beam spot on a substrate. The junctions having size of 100 nm × 100 nm have been fabricated using focused ion beam chemical vapor deposition (FIB-CVD). The nanothermocouples have shown a fast response to the changes in temperature. These nanothermocouples can find useful applications in thermal characterization of nanomaterials and for understanding of temperature mediated phenomena in the samples treated under directed energy deposition processes, e.g. ion, laser and electron beam treatment.  相似文献   

9.
Pure nickel (Ni) was electrodeposited onto a copper (Cu) substrate from choline chloride-urea (1:2 molar ratio) eutectic-based ionic liquid (1:2 ChCl-urea IL) with 0-1200 mg/L additions of nicotinic acid (NA). The effect of NA on the voltammetric behavior of Ni (II) was investigated by cyclic voltammetry, whilst the nucleation/growth of Ni deposits was studied by chronoamperometry. The resultant surface morphologies and microstructures of the Ni coatings were revealed by SEM/EDXS, XRD and TEM, demonstrating that NA can inhibit, hence tailor, the Ni deposition and serve as a very effective brightener producing highly uniform and smooth Ni deposits. The nucleation/growth process of Ni was not affected by the presence of NA, proceeding via three-dimensional instantaneous nucleation. NA has a profound grain refining effect with a grain size of ∼4.2 nm achievable.  相似文献   

10.
The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.  相似文献   

11.
A new technique called “infrared laser-assisted nanoimprint lithography” was utilised to soften the thermoplastic polymer material mR-I 8020 during nanoimprint lithography. A laser setup and a sample holder with pressure and temperature control were designed for the imprint experiments. The polymer was spin coated onto crystalline Si <1 1 1> substrates. A prepatterned Si <1 1 1> substrate, which is transparent for the CO2 laser irradiation, was used as an imprint stamp as well. It was shown, that the thermoplastic resist mR-I 8020 could be successfully imprinted using the infrared CW CO2 laser irradiation (λ = 10.6 μm). The etching rate of the CO2 laser beam irradiated mR-I 8020 resist film under O2 RF (13.56 MHz) plasma treatment and during O2 reactive ion beam etching was investigated as well.  相似文献   

12.
Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 103 mm−2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited “Ni crowns” with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.  相似文献   

13.
The present paper investigates the surface roughness generated by reactive ion etching (RIE) on the location between silicon dioxide (SiO2) micro-pits structures. The micro-pit pattern on polymethyl methacrylate (PMMA) mask was created by an electron beam lithography tool. By using PMMA as a polymer resist mask layer for pattern transfer in RIE process, the carbon (C) content in etching process is increased, which leads to decrease of F/C ratio and causes domination of polymerization reactions. This leads to high surface roughness via self-organized nanostructure features generated on SiO2 surface which was analyzed using atomic force microscopy (AFM) technique. The etching chemistry of CHF3 plasma on PMMA masking layer and SiO2 is analyzed to explain the polymerization. The surface root-mean-square (RMS) roughness below 1 nm was achieved by decreasing the RF power to 150 W and process pressure lower than 10 mTorr.  相似文献   

14.
A systematic study on Ni-W alloy underlayers has shown that a highly textured (2 1 1)-Ni4W can be formed after deposition at room temperature. Highly textured (0 0 0 1)-SmCo5 with a high out-of-plane coercivity (over 10 kOe) and large perpendicular anisotropy can be obtained after deposition on the (2 2 1)-Ni4W underlayer probably due to a small mismatch between (2 2 1)-Ni4W and (0 0 0 1)-SmCo5. Our study indicates that the surface roughness of the underlayers also plays a crucial role, that a smooth surface is favorable for a good crystallinity and high coercivity of SmCo5. Moreover, we found that a highly textured Ni-(1 1 1) can be obtained on the top of the (2 1 1)-textured Ni4W. The film structure of SmCo5/Ni/Ni4W may be interesting as the hard/soft double-layered film for perpendicular magnetic recording or for other applications after a further development.  相似文献   

15.
γ′-Fe4N thin films were grown on MgO-buffered Si (1 0 0) by pulsed laser deposition technique. Different crystallographic orientations and in-plane magnetic anisotropies were achieved by varying the growth temperature of the MgO buffer layer. When the MgO buffer layer was grown at room temperature, the γ′-Fe4N film shows isotropic in-plane magnetic properties without obvious texture; while in-plane magnetic anisotropy was recorded for the γ′-Fe4N films deposited on a 600 °C-grown-MgO buffer due to the formation of a (1 0 0)-oriented biaxial texture. Such a difference in in-plane magnetic anisotropy is attributed to the epitaxial growth of γ′-Fe4N film on an MgO buffer with relaxed strain when the MgO layer was grown at a high temperature of 600 °C.  相似文献   

16.
We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.  相似文献   

17.
In this paper we describe the alloying process of ultra-thin Al layers (below 8 × 1015 Al/cm2) deposited on Ni(1 1 1). For this purpose Auger electron spectroscopy, low energy electron diffraction, and ion beam analysis-channelling measurements have been performed in situ in an ultra-high vacuum chamber. Al deposits formed at low temperature (about 130 K) are strained defective crystalline layers retaining the substrate orientation. Alloying takes place, with very progressive Ni enrichment, in a very broad temperature range between 250 K and 570 K. This feature shows that diffusion of the alloy species is more and more difficult when the Ni concentration increases. At 570 K a crystallographically and chemically ordered Ni3Al phase is formed, and its order continuously improves upon annealing, up to 750 K. We have shown by ion beam methods that this alloy is three-dimensional, extending up to 16 (1 1 1) planes for the thickest deposits. The Ni3Al phase can also be obtained directly by Al deposition at 750 K, but its crystalline quality is lower and the layer is probably formed of grains elongated along 〈1 1 −2〉 directions. The Al content of the thin Ni3Al layers formed mostly dissolves in the bulk above 800 K. However a small amount of Al remains segregated at the Ni crystal surface.  相似文献   

18.
Direct metal ion beam deposition (DMIBD) technique for Cu thin film metallization is characterized. With suitable operating conditions, secondary Cu ion yield, ion/atom arrival rate ratio, ion beam energy spreads were optimized at 15%, 0.3, and 10%, respectively.After optimization of DMIBD system, the effect of Cu ion beam energy on the resistivity, adhesion strength, and surface morphology of Cu thin film was investigated. TEM micrograph shows that the film prepared at 75 eV was polycrystalline, while the film prepared at 0 eV was vertical columnar structure.As ion beam energy is increased from 25 to 75 eV, the resistivity is decreased from 6.21 to 2.09 μΩ cm, while the critical load to cause adhesion failure was increased to about 13 N at 200 eV, which is four-times higher that that of 25 eV.  相似文献   

19.
Biaxially textured yttria stabilized zirconia (YSZ) thin films, were deposited on glass substrates by ion beam assisted deposition method with different deposition time. As contrasts, films were also fabricated without assisting ion beam. The orientation properties of the films were characterized by X-ray diffraction. A comparative study shows that there is a competition between (0 0 1) and (0 1 1) alignments during the growth process. Assisting ions make the films (0 0 1)-advantaged and biaxially textured. The competitive growth and the orientation development are explained by selective resputtering and anisotropic damage on growing films induced by assisting ions.  相似文献   

20.
The synthesis of nanocrystalline ZnS thin films by pulsed laser deposition and their modification by swift heavy ions are presented. The irradiations with 150 MeV Ni ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2 have been used for these studies. Irradiation results in structural phase transformation and bandgap modification of these films are investigated by using X-ray diffraction and UV-visible absorption measurements, respectively. Since stoichiometry changes induced by irradiation can contribute to the modification of these properties, elastic recoil detection analysis has been performed on pristine and 150 MeV Ni ions irradiated ZnS thin films using a 120 MeV Ag ion beam. The stoichiometry of the films has been found to be similar for pristine and ion irradiated samples. A structural phase diagram based on thermal and pressure spikes has been constructed to explain the structural phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号