首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The role of styrene‐ethylene/propylene (SEP) diblock copolymer in controlling morphology development of polypropylene/polystyrene (PP/PS) blends was studied by means of small angle laser scattering (SALS) and scanning electron microscopy (SEM). According to SALS, a certain amount of SEP was located at the phase boundary, forming a relatively thick transition layer penetrating into the homopolymers. The thickness of the transition layer was quantified in terms of Debye–Bueche light scattering theory. For PP/PS (1/99) and PP/PS (20/80) blends, the incorporation of SEP into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as a uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. However, for PP/PS (45/55) blends, the addition of SEP results in a nonmonotonous change in domain size. The morphology fluctuation of the fracture surfaces was analyzed using an integral constant Q based on Debye–Bueche light scattering theories. Variation of Q as a function of the concentration of SEP showed that, due to the penetrating transition layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to a more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of the fracture surfaces appeared.  相似文献   

2.
We report on a simple and environmental friendly method to produce composite biocompatible antibacterial coatings consisting of silver nanoparticles (AgNPs, size 40 nm) combined with polymer blends (polyethylene glycol/poly(lactide-co-glycolide), PEG/PLGA blends). The PEG/PLGA&AgNPs coatings were produced by Matrix Assisted Pulsed Laser Evaporation, using a Nd:YAG laser with λ=266 nm. The AgNPs were deposited either on top of a PEG/PLGA layer (i.e., bilayered coating), or simultaneously with the polymers (i.e., blended coating). In both cases, chemical analysis indicated that the polymers preserved their integrity, with no evidence of chemical interaction with the AgNPs. Morphological investigations evidenced homogenous distribution of individual AgNPs on the surface of the coatings, with no signs of aggregation. The size of the AgNPs was ~40 nm, consistent with size of the as-received ones. The presence of AgNPs in the coatings was confirmed by the absorption band at ~420 nm and their stability was checked by monitoring this absorption versus time. After exposure to air, the AgNPs from the bilayered coating showed signs of oxidation. In the blended coating, the oxidation of the AgNPs was prevented by the neighboring polymer molecules. Finally, preliminary investigations confirmed the bacterial killing activity of the coatings against Escherichia coli.  相似文献   

3.
Partially oxidized spherical silver nanoparticles (AgNPs) of different size are prepared by pulsed laser ablation in water and directly conjugated to protein S-ovalbumin for the first time and characterized by various optical techniques. UV–Visible spectrum of AgNPs showed localized surface plasmon resonance (LSPR) peak at 396 nm which red shift after protein addition. Further the increased concentration of AgNPs resulted a decrease in intensity and broadening of S-ovalbumin peak (278 nm), which can be related to the formation of protein NPs complex caused by the partial adsorption of S-ovalbumin on the surface of AgNPs. The red shift in LSPR peak of AgNPs after mixing with S-ovalbumin and decrease in protein-characteristic peak with increased silver loading confirmed the formation of protein–AgNPs bioconjugates. The effect of laser fluence on the size of AgNPs and nanoparticle–protein conjugation in the size range 5–38 nm is systematically studied. Raman spectra reveal broken disulphide bonds in the conjugated protein and formation of Ag–S bonds on the nanoparticle surface. Fluorescence spectroscopy showed quenching in fluorescence emission intensity of tryptophan residue of S-ovalbumin due to energy transfer from tryptophan moieties of albumin to AgNPs. Besides this, small blue shift in emission peak is also noticed in presence of AgNPs, which might be due to complex formation between protein and nanoparticles. The binding constant (K) and the number of binding sites (n) between AgNPs and S-ovalbumin have been found to be 0.006 M?1 and 7.11, respectively.  相似文献   

4.
Surface‐enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (AgNP) properties. We demonstrate that the enhancement factor for ν 4/A1g, ν 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative amount of small NPs in colloids, with the decrease in AgNP size and with plasmon resonance shift to the shorter wavelength region. Obtained results can be explained by the ability of smaller AgNPs to get deeper into nano‐invaginations of the plasma membrane than larger AgNPs. This shortens the distance between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands ν 10/B1g and A2g is more sensitive to AgNPs’ size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band ν 4/A1g. This can be used for AgNP‐controlled enhancement of the desired Raman bands and should be taken into account in biomedical SERS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Effect of Silver nanoparticles (AgNPs) morphology on their fluorescence behavior is reported. AgNPs sol stabilized by Ethylene Diamine Tetra Acetic-Acid (EDTA) was prepared by chemical reduction method. Morphology of the AgNPs was tuned through changing the Ag+ ion concentration and PH of reaction mixture. Additional peaks observed in surface Plasmon resonance spectra suggest the an-isotropic nature of AgNPs. Actual morphology was judged by Transmission Electron Microscopy. Emission spectra recorded using Spectrofluoremeter suggest the fluorescent nature of AgNPs, which also influenced by morphology of AgNPs and attributed to the variation in surface structure of an-isotropic AgNPs.
Figure
?  相似文献   

6.
The silver nanoparticles (AgNPs) were synthesized in an alkalic aqueous solution of silver nitrate (AgNO3)/carboxymethylated chitosan (CMCTS) with ultraviolet (UV) light irradiation. CMCTS, a water-soluble and biocompatible chitosan derivative, served simultaneously as a reducing agent for silver cation and a stabilizing agent for AgNPs in this method. UV–vis spectra and transmission electron microscopy (TEM) images analyses showed that the pH of AgNO3/CMCTS aqueous solutions, the concentrations of AgNO3 and CMCTS can affect on the size, amount of synthesized AgNPs. Further by polarized optical microscopy it was found that the CMCTS with a high molecular weight leads to a branch-like AgNPs/CMCTS composite morphology. The diameter range of the AgNPs was 2–8 nm and they can be dispersed stably in the alkalic CMCTS solution for more than 6 months. XRD pattern indicated that the AgNPs has cubic crystal structure. The spectra of laser photolysis of AgNO3/CMCTS aqueous solutions identified the early reduction processes of silver cations (Ag+) by hydrated electron formed by photoionization of CMCTS. The rate constant of corresponding reduction reaction was 5.0 × 109 M−1 s−1.  相似文献   

7.
The process of the formation of silver nanoparticles (AgNPs) via the method of galvanic replacement (GR) of Ag+ with aluminum powder in sodium polyacrylate (NaPA) solutions in the ultrasonic (US) field has been studied. It was observed, that the yellow colloidal solutions of stabilized AgNPs with the absorption maximum at ∼ 410 nm were obtained under the application of US power by 20 W and frequency by 20 kHz in the wide range of AgNO3 and NaPA concentrations (0.1 – 0.5 mM and 0.5 – 5.0 g/L respectively) at 25 0C. It was shown, that the GR process under US field occurs without of the significant induction period. Using the UV–vis spectroscopy the kinetics of AgNPs formation has been studied and it was observed the first order kinetics with respect to Ag+ ions both for the nucleation and growth processes. It was found that observable rate constants of nucleation are close for the all experimental conditions but the observable rate constants of growth decreased with increasing of initial concentration of AgNO3. Based on the obtained kinetic data it was proposed a mechanism of the formation of AgNPs consisted of the following two main stages: 1) the nucleation with the formation of primary nanoclusters (AgNCs) on aluminum surface followed by their ablation from the surface of the sacrificial metal by ultrasound into bulk of solution; 2) the transformation of AgNCs in AgNPs via growth from the Al surface and / or agglomeration of AgNCs. Using TEM it was found that the size of obtained AgNPs does not exceed of 25 nm and slightly depends on the initial concentrations of precursors. High antimicrobial activity of obtained colloidal solutions against gram-negative and gram-positive bacteria as well as against fungi was observed.  相似文献   

8.
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10 μM. 532 nm laser (40 mW/cm2, 10 min) and 1 MHz ultrasound (500 mW/cm2, 10 min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the US + aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1 MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1 MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the US + aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1 MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.  相似文献   

9.
The modification induced in polystyrene (PS) by the ArF excimer laser radiation has been investigated. Various numbers of the laser pulses of the energies below the material ablation threshold were applied. Changes in the chemical composition of the PS surface layer were studied by the X-ray photoelectron spectroscopy (XPS). Analysis of the morphological changes in the polymer surface layer was performed via the atomic force microscopy (AFM). The contact angles of test liquids (water and diiodomethane) were measured with use of a goniometer while the surface energy (SE) was calculated by the Owens-Wendt method. It was found that the surface energy change was mainly affected by surface roughness caused by the laser radiation and that surface oxidation had not considerably contributed to this change. The increase in the SE was mostly due to its disperse component.  相似文献   

10.
We demonstrate a valuable method to generate reactive groups on inert polymer surfaces and bond antibacterial agents for biocidal ability. Polystyrene (PS) surfaces were functionalized by spin coating of sub-monolayer and monolayer films of poly(styrene-b-tert-butyl acrylate) (PS-PtBA) block copolymer from solutions in toluene. PS-PtBA self-assembled to a bilayer structure on PS that contains a surface layer of the PtBA blocks ordering at the air-polymer interface and a bottom layer of the PS blocks entangling with the PS substrate. The thickness of PtBA layer could be linearly controlled by the concentration of the spin coating solution and a 2.5 nm saturated monolayer coverage of PtBA was achieved at 0.35% (w/w). Carboxyl groups were generated by exposing the tert-butyl ester groups of PtBA on saturated surface to trifluoroacetic acid (TFA) to bond tert-butylamine via amide bonds that were further chlorinated to N-halamine with NaOCl solution. The density of N-halamine on the chlorinated surface was calculated to be 1.05 × 10−5 mol/m2 by iodimetric/thiosulfate titration. Presented data showed the N-halamine surface provided powerful antibacterial activities against Staphylococcus aureus and Escherichia coli. Over 50% of the chlorine lost after UVA irradiation could be regained upon rechlorination. This design concept can be virtually applied to any inert polymer by choosing appropriate block copolymers and antibacterial agents to attain desirable biocidal activity.  相似文献   

11.
This study describes the synthesis of silver nanoparticles (AgNPs) using aqueous silk fibroin (SF) solution obtained from Bombyx mori silk under gamma radiation environment. The obtained AgNPs were characterized using UV–visible (UV–Vis) spectroscopy, X-ray diffraction (XRD) measurements, dynamic light scattering experiment (DLS) and transmission electron microscope (TEM) images. The UV–Vis absorption spectra of the samples confirmed the formation of AgNPs by showing surface plasmon resonance (SPR) band in the range of (= 428–435?nm. The XRD study revealed metal silver with the face-centered cubic (FCC) crystal structure. DLS measurements showed the dose-dependent average size of the AgNPs. TEM images showed formed AgNPs are nearly spherical in shape with smooth edges. From this study, it was found that the increasing radiation dose increases the rate of reduction and decreases the particle size. The size of the AgNPs can be tuned by controlling the radiation dose.  相似文献   

12.
The selective removal and patterning of a typical pseudo-spin-valve structure, consisting of a Co(20 nm)/ Cu(6 nm)/Co(3 nm) trilayer, by femtosecond laser has been examined in terms of irradiation parameters and layer structure. Ablation thresholds of the individual Co and Cu thin films and the SiO2/Si substrate have been measured for single-shot irradiation with a 200 femtosecond (fs) laser pulses of a Ti:sapphire laser operating at 775 nm. Ablation of the entire trilayer structure was characterized by a sequential removal of the layers at a threshold level of fluence of 0.28 J/cm2. Atomic Force Microscopy, optical microscopy, profilometry and Sputtered Neutral Mass Spectroscopy were employed to characterize the laser-induced single-shot laser selective removal and patterned areas. As a result, two phenomena were found to characterize the laser process: (i) selective removal of the Co and Cu layer due to the change of the laser fluence and (ii) regular pillars’ area of Co/Cu/Co could be achieved in a regular manner with the lowest pillar width size of 1.5 μm. Ablation through the layers was accompanied by the formation of bulges at the edges of the pillars, which was the biggest inconvenience in lowering the pillar size through the femtosecond laser process.  相似文献   

13.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

14.
The results of an investigation of the electromagnetic wave polarization, probing high-temperature laser plasma, as well as spatial-temporal structure of the magnetic fields, electron density, current density, and electron drift velocity are presented. To create the plasma, plane massive Al targets were irradiated with the second harmonic of a phoenix Nd laser at intensities up to 5·1014 W/cm2. It was shown that the magnetooptical Faraday effect is the main mechanism responsible for the changing polarization of the probing wave. Magnetic fields up to 0.4 MG with electron densities ∼1020 cm−3 were measured. Analysis of the magnetic field spatial distribution showed that the current density achieved the value ∼90 MA/cm2 on the laser axis. The radial structure of the magnetic field testified to the availability of the reversed current in the laser plasma. The spatial and temporal resolutions in these experiments were equaled to ∼5 μsec and ∼50 psec, respectively. Translated from Preprint No. 35 of the Lebedev Physics Institute, Moscow, 1993.  相似文献   

15.
In order to reduce the density mismatch between TiO2 and the low dielectric medium and improve the dispersion stability of the electrophoretic particles in the low dielectric medium for electrophoretic display application, polystyrene/titanium dioxide (PS/TiO2) core–shell particles were prepared via in-situ sol–gel method by depositing TiO2 on the PS particle which was positively charged with 2-(methacryloyloxy)ehyl trimethylammonium chloride (DMC). The morphology and average particle size of PS/TiO2 core–shell particles were observed by transmission electron microscopy (TEM), scanning electron microscope (SEM) and particle size analyzer. It was found that density of PS/TiO2 core–shell particles were reduced obviously and the particles can suspend in the low dielectric medium of low density. The PS/TiO2 core–shell particles can endure ultrasonic treatment because of the interaction between TiO2 and PS. Zeta potential and electrophoretic mobility of the fabricated core–shell particles in a low dielectric medium with charge control agent was measured to be −44.3 mV and −6.07 × 10−6 cm2/Vs, respectively, which presents potential in electronic paper application.  相似文献   

16.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   

17.
Self-assembly of block copolymer is an effective strategy to prepare periodic structures at nanoscale. In this paper an unique and very simple method to prepare inorganic silica nanopattern is demonstrated from self-assembling of poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) on the surface of silicon wafer. To simplify the patterning process, at first we obtain highly ordered PDMS microdomains, which are covered with PS layer by controlling solvent vapor annealing conditions. Following exposure to UV/O3 irradiation, nanopatterned surface consisting of silicon oxide is fabricated directly via selectively etching PS phase and converting PDMS phase into silicon oxide. As tuning the composition of the block copolymer, hexagonally packing dot and straight stripe pattern can be obtained. Finally, the time evolution from spheres morphology to aligned long cylinders is discussed. These results hold promise for nanolithography and the fabrication of nanodevices.  相似文献   

18.
In this paper, we describe in detail a narrow linewidth and frequency-stable laser source used to probe the 5s 2 S 1/2–4d 2 D 5/2 clock transition of the 88Sr+ optical frequency standard. The performance of the laser system is investigated with studies of its frequency drift rates and with high resolution spectra of the 88Sr+ clock transition. The observed short-term drift rates are typically in the range of 10 to 23 mHz/s, and the current long-term drift rate is 13.9(3) mHz/s. The laser stability, after subtraction of linear drifts, reaches 5×10−16 at an averaging time of 3000 s. This high level of stability is attributed for the most part to stabilization of the reference cavity at the temperature where the coefficient of linear thermal expansion crosses zero. An upper bound for the laser linewidth is given by the observation of a Fourier-transform limited resonance of 4.3 Hz (Δν/ν=1×10−14) on the 88Sr+ clock transition. The effective averaging time during the linewidth measurements was about 100 s.  相似文献   

19.
Considering the mixture after muon‐catalyzed fusion (μ CF) reaction as overdense plasma, we study muon motion in the plasma produced by a superintense linearly polarized femtosecond laser pulse. Muon drift along the propagation of laser radiation remains after the end of the laser pulse. At the peak laser intensity of 1021W/cm2, muon goes from the skin layer into field‐free matter at short time which is much less than the pulse duration, before the laser pulse reaches its maximum. Besides, the influence of the laser on other particles in the plasma is less. Hence, this work can avoid muon sticking to alpha (α) effectively and reduce muon‐loss probability in μ CF. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Laser alloying of Ni–P electroless deposited layer with aluminum substrate was carried out by Nd–YAG pulsed laser. The phase composition and microstructure of the alloyed layers produced by different laser power densities were identified by X-ray diffractionary (XRD), scanning electron microscope (SEM) accompanied by energy dispersion X-ray analysis (EDS) and transmission electron microscope (TEM). Furthermore, the surface roughness of the alloyed layers was characterised by confocal laser scanning microscope (CLSM). The results showed that the characteristic dendritic or lamellar microstructures were observed in the alloyed layers. The phase constituents of the alloyed zones were intermetallic compounds of nickel–aluminum NiAl, Al3Ni and Al3Ni2, as well as some non-equilibrium phases and amorphous phases depending on the employed laser power density. As a result, the microhardness of the alloyed layer with Ni–P amorphous phases formed at laser power density 5.36×109 W/m2 reached to HV0.1 390.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号