首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
改进的随机轨道模型   总被引:5,自引:0,他引:5  
在随机轨道模型中,由于气相脉动速度对分散相颗粒作用的间歇性,使得井非在控制体内轨道上的每一点都可以代表该轨道参与颗粒相平均特性的统计计算,从而出现随机轨道模型往往低估颗粒相湍流脉动的情况.为此,本文提出了一种改进的随机轨道模型,在该模型中,分散相的时平均量在由其自身湍流脉动所确定的随机轨道上输运.与常用的随机轨道模型相比,其具有计算量小、计算结果合理且易于得到和分散相入口湍流脉动状况易于考虑等特点.对一简单已知流场的预报结果合理正确,克服了常用的随机轨道模型低估颗粒相湍流脉动的困难.  相似文献   

2.
循环床内气固两相流中稠密颗粒间碰撞的数值模拟   总被引:10,自引:1,他引:9  
循环床内部的流动属于复杂不均匀的稠密气固两相流,稠密颗粒间的相互作用是影响颗粒运动和浓度分布的不可忽视的重要因素。本文采用直接模拟Monte-Carlo算法(DSMC算法)来模拟颗粒间的相互碰撞过程,并与随机轨道模型结合起来综合考虑湍流和颗粒碰撞对颗粒运动和浓度分布的影响,模拟结果预报了床内分层流动结构和颗粒在稀相区的不均匀分布,计算结果与实验定性符合。  相似文献   

3.
本文采用双流体模型,引入颗粒动力学理论,对提升管内的稠密气粒两相流动进行了大涡模拟。采用改进的分步投影法对滤波后的方程进行显式求解,小尺度量采用Smagorinsky亚格子模式模拟。模拟结果给出的颗粒相速度分布、浓度分布与实验值基本吻合,气固两相存在速度滑移。模拟结果合理预报出了提升管内的环-核流动结构。  相似文献   

4.
徐一  周力行 《计算物理》2000,17(6):633-640
用颗粒运动的拉氏分析和PDF方法,改进了颗粒相的二阶矩模型。由拉氏两相运动的随机微分方程出发,采用随机过程分析和信号分析法得到湍流两相流动的PDF输运方程,双流体模型方程和两相脉动速度相关的基本模式的封闭式,和用其它方法导出的方程与封闭式的结果一致,对封闭式作了重要的改进,在分析颗粒轨道上的流体湍流作用时间时,全面地引入拉氏分析的轨道穿越效应、惯性效应、连续效应和湍流的各向异性。  相似文献   

5.
方形分离器内气固两相流动的数值模拟   总被引:6,自引:0,他引:6  
本文采用颗粒随机轨道模型,并与k-ε模型及应力代数模型相结合,对方形分离器内的三维气固两相流动进行了数值模拟,气相计算得到了与实验结果基本一致的湍流流场,两相计算得出了与实验基本符合的分离器分离效率曲线。计算结果表明,在方形分离器内的旋风流动计算中,k-ε模型及应力代数模型均得到比较合理的结果,并与实验符合较好;两相流动的计算初步分析了方形分离器的分离性能及分离机理,得到对工程设计有指导意义的结论。  相似文献   

6.
旋流燃烧室内颗粒运动的数值模拟   总被引:3,自引:0,他引:3  
本文应用流体相湍流脉动速度大小和方向均具有随机性的颗粒相随机轨道模型,对有直流一次风和旋流二次风的旋流燃烧室内的颗粒运动进行了数值模拟。得到的颗粒相轴向总质量流通量、轴向与切向速度分布与实验测量数据相符合,并比 Gosman 颗粒随机轨道模型的模拟结果有一定的改进。  相似文献   

7.
k-ε-PDF两相湍流模型和台阶后方气粒两相流动的模拟   总被引:3,自引:0,他引:3  
本文提出了两相湍流的k-ε-PDF模型。PDF模型所得的湍流两相流动的统计平均方程,与雷诺时均方程有相似的形式,但PDF模型可精确计算出颗粒相各方程的脉动关联项。本文将该模型用于预报台阶后方湍流两相流动,与k-ε-kp模型相比,它可以更合理地预报出颗粒湍流的各向异性。  相似文献   

8.
本文初步探索用统一二阶矩(USM)两相湍流模型及K-ε-kp模型预报旋流数为1.5的轴向-切向进风、轴向供粉的强旋气粒两相流动,预报结果与实验的对比表明,USM模型在预报强族流动两相时平均切向速度场上优于K-ε-Kp模型,并且能够合理地给出与实验定性一致的两相湍流脉动的各向异性.  相似文献   

9.
炉内两相流动和煤粉燃烧的双流体-轨道模型   总被引:9,自引:0,他引:9  
本文首次用双流体一轨道(连续介质-轨道CT)模型对大尺寸四角喷燃炉内气粒两相流动及煤粉燃烧进行了模拟。该模型基于欧拉气相方程组、欧拉颗粒连续方程和动量方程以及拉氏颗粒能量和质量变化的方程,对各子模型用k-ε-kp两相湍流模型,EBU-Arrhenius湍流燃烧模型,煤粉颗粒的水分蒸发,热解挥发和焦炭燃烧的扩散-动力模型,DO(离散坐标)辐射模型。采用了将坐标扭转一定角度的方法减小入口射流和网格斜交造成的伪扩散。编制了LEAGAP-FURNACE-3程序,分别对冷态模型炉内两相流动和大尺寸炉内三维两相流动和煤粉燃烧进行了模拟,并与颗粒轨道(ST)模型的模拟结果进行了对照。采用PDPA对冷态模型炉内气粒两相流场进行了测量。冷态两相流动的模拟与实验结果的对比表明CT模型的模拟结果和实验符合较好,ST模型所得颗粒浓度分布和实验山入较大。热态模拟的结果给出了两相速度,气相温度,组分浓度和壁面热流分布。模拟结果定性合理。模拟结果显示在出口处由于气流旋转,有一局部高温区存在。  相似文献   

10.
用随机过程理论建立气固两相耦合脉动量Lagrange方程,并建立了气固两相流随机颗粒轨道模型中颗粒Reynolds正应力的Lagrange方程.将新的模型运用于各向同性的湍流衰减的流场中,模拟颗粒的湍流扩散特性,与文[1]中的模型和实验结果作比较,并使用新模型模拟了后台阶两相流动.  相似文献   

11.
Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size fractionate particles in a moving air stream is described. Separate particle-laden and clean air streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles cause them to move transverse to the flow direction. Since the radiation force is dependent upon the particle size, larger particles move a greater transverse distance as they pass through the standing wave. The outlet flow is then separated into streams, each containing a range of particle sizes. Experiments were performed with air streams containing glass microspheres with a size distribution from 2-22 μm, using a centerline air stream velocity of approximately 20 cm/s. An electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the outlet were compared with the predictions of a theoretical model. Experiments and theory show reasonable correspondence. The theoretical model also indicates an optimal partitioning of the particle-laden and clean air inlet streams.  相似文献   

12.
本文对直流除尘器涡室内固体粒子的湍流脉动现象进行了数值分析,通过气体速度随机脉动谱,把气相湍流运动对固体粒子运动的影响引入粒子的运动平衡方程中,用拉格朗日法模拟了粒子的轨迹及其扩散运动,应用四阶龙科库塔方法求解粒子的运动方程。计算结果表明对粒子的数值模拟可以较好地预测除尘器的性能,如除尘器的切割粒径。  相似文献   

13.
A fictitious-domain based formulation for fully resolved simulations of arbitrary shaped, freely moving rigid particles in unsteady flows is presented. The entire fluid–particle domain is assumed to be an incompressible, but variable density, fluid. The numerical method is based on a finite-volume approach on a co-located, Cartesian grid together with a fractional step method for variable density, low-Mach number flows. The flow inside the fluid region is constrained to be divergence-free for an incompressible fluid, whereas the flow inside the particle domain is constrained to undergo rigid body motion. In this approach, the rigid body motion constraint is imposed by avoiding the explicit calculation of distributed Lagrange multipliers and is based upon the formulation developed by Patankar [N. Patankar, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research Annual Research Briefs 2001 (2001) 185–196]. The rigidity constraint is imposed and the rigid body motion (translation and rotational velocity fields) is obtained directly in the context of a two-stage fractional step scheme. The numerical approach is applied to both imposed particle motion and fluid–particle interaction problems involving freely moving particles. Grid and time-step convergence studies are performed to evaluate the accuracy of the approach. Finally, simulation of rigid particles in a decaying isotropic turbulent flow is performed to study the feasibility of simulations of particle-laden turbulent flows.  相似文献   

14.
Three physical mechanisms which may affect dispersion of particle's motion in wall-bounded turbulent flows, including the effects of turbulence, wall roughness in particle-wall collisions, and inter-particle collisions, are numerically investigated in this study. Parametric studies with different wall roughness extents and with different mass loading ratios of particles are performed in fully developed channel flows with the Eulerian-Lagrangian approach. A low-Reynolds-number $k-\epsilon$ turbulence model is applied for the solution of the carrier-flow field, while the deterministic Lagrangian method together with binary-collision hard-sphere model is applied for the solution of particle motion. It is shown that the mechanism of inter-particle collisions should be taken into account in the modeling except for the flows laden with sufficiently low mass loading ratios of particles. Influences of wall roughness on particle dispersion due to particle-wall collisions are found to be considerable in the bounded particle-laden flow. Since the investigated particles are associated with large Stokes numbers, i.e., larger than $\mathcal{O}(1)$, in the test problem, the effects of turbulence on particle dispersion are much less considerable, as expected, in comparison with another two physical mechanisms investigated in the study.  相似文献   

15.
Y. Liu  L.X. Zhou 《Physica A》2010,389(23):5380-5389
A subgrid scale two-phase second-order-moment (SGS-SOM) model based on the two-fluid continuum approach is presented for the analysis of the instantaneous flow structures of swirling and non-swirling coaxial-jet particle-laden turbulence flows. Since the interaction between the two-phase subgrid scale stresses and the anisotropy of two-phase subgrid scale stresses is fully considered, it is superior to the conventional subgrid scale model on the basis of single gas phase or together with their similar forms for the particle phase for not taken these characters thoroughly into account. The swirling numbers s=0.47 and s=0 of coaxial-jet particle-laden turbulence flows (measured by M. Sommerfeld, H.H. Qiu, Detailed measurements in a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat Fluid Flow 12 (1991) 20-28) are numerically simulated by large eddy simulation using this model, together with a Reynolds-averaged Navier-Stokes model using the unified second-order-moment two-phase turbulence model (RANS-USM). The instantaneous results show that the multiple recirculating gas flow structure is similar to that of single-phase swirling flows; but the particle flow structure contains less vortices. Both SGS-SOM and RANS-USM predicted that the two-phase time-averaged velocities and the root-mean-square fluctuation velocities are validated and are in good agreement with the experimental results. It is seen that for the two-phase time-averaged velocities both the models give almost the same results, hence the RANS-USM modeling is validated by large eddy simulation. For the two-phase root-mean-square fluctuation velocities the SGS-SOM results are obviously better than the RANS-USM results.  相似文献   

16.
This paper focuses on Large-Eddy simulation of particle-laden flow. We present a novel model for the effect of unresolved scales on the particles. The model can be regarded as an extension of the approximate deconvolution method towards higher wavenumbers. The basis of the model is a specific interpolation method which is constructed such that the spectrum seen by the particles attains a model spectrum. Thus, the model is called Spectrally Optimised Interpolation (SOI). The model is developed and tested in the framework of homogeneous isotropic turbulence. A comparison of SOI against ADM [J.G.M. Kuerten, Subgrid modelling in particle-laden channel flow, Phys. Fluids 18 (2006) 025108] shows that in particular in coarse LES, SOI is far more accurate than ADM. The computational costs for SOI are comparable to fourth order interpolation. Possible extensions of the model for general flows are briefly sketched.  相似文献   

17.
旋流和无旋突扩流动的LES和RANS模拟   总被引:2,自引:0,他引:2  
《工程热物理学报》2005,26(2):339-342
本文用smagorinsky-Lilly亚网格尺度湍流模型对旋流突扩流动(s=0.53)和无旋突扩流动(s=0)进行了大涡模拟(LES模拟),同时分别用压力应变项为IPCM和IPCM+Wall模型的雷诺应力方程模型进行了RANS模拟,和LES的统计结果对比。LES的统计结果与雷诺应力模型的模拟结果及实验对照表明,LES结果与实验结果的吻合比雷诺应力模型的好,说明所用的亚网格尺度湍流模型对旋流流动是适用的,LES结果是可信的。LES的瞬态结果揭示出在旋流作用下,流场中存在复杂的旋涡脱落现象。大涡结构极易破碎成小涡,而在无旋突扩流动的情况下,由于剪切的作用更强,大涡结构的尺寸和范围比旋流流动的要大。  相似文献   

18.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

19.
Seitzman JM  Wainner RT  Yang P 《Optics letters》1999,24(22):1632-1634
We demonstrate a new imaging technique for velocity measurements in particle-laden flows. The technique, particle vaporization velocimetry, is a form of flow tagging based on laser vaporization of absorbing particles at defined locations in the flow. The locations of these tagged regions are then interrogated after a known delay to determine the convective velocity. Results are presented for vaporization of carbonaceous (soot) particles in a nonreacting gas jet and a hydrocarbon flame, with interrogation provided by either elastic scattering or laser-induced incandescence from the soot. The long lifetime of the tagged soot regions (>2 ms) allows measurements to be made over a wide range of velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号