首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The motion of spiral waves in excitable media driven by a weak pacing around the spiral tip is investigated numerically as well as theoretically. We presented a Bifurcations diagram containing four types of the spiral motion induced by different frequencies of pacing: rigidly rotating, inward-petal meandering, resonant drift, and outward-petal meandering spiral. Simulation shows that the spiral resonantly drifts when the frequency of pacing is close to that of the spiral rotation. We also find that the speed and direction of the drift can be efficiently controlled by means of the strength and phase of the local pacing, which is consistent with analytical results based on the framework of the weak deformation approximation.   相似文献   

2.
钱郁 《物理学报》2012,61(15):158202-158202
本文首先研究了时空调制对可激发介质中周期螺旋波波头动力学行为的影响. 随着时空调制的增大, 螺旋波经历了周期螺旋波、外滚螺旋波、旅行螺旋波和内滚螺旋波的显著变化. 通过定义序参量来定量的描述由时空调制引起的螺旋波在不同态之间非平衡跃迁的临界条件, 及漫游螺旋波波头圆滚圆半径随调制参数的变化情况. 当时空调制增大到某个临界值时, 螺旋波发生了破碎; 再增加时空调制, 螺旋波则发生了衰减, 系统最终演化为空间均匀静息态. 在文中给出了螺旋波发生破碎和衰减的机理和原因. 最后将时空调制方法运用于漫游螺旋波, 实现了将漫游螺旋波控制成周期螺旋波, 或将其控制为空间均匀静息态.  相似文献   

3.
We investigate the drift of a spiral wave core in a homogeneous excitable medium under the influence of a periodic stimulation by wave trains close to the core. Two important results were found. First, as opposed to existing theories of spiral wave drift, we observe drift induced by wave trains with periods larger than the period of the freely rotating spiral wave. Second, when investigating the drift of meandering spirals we found that the property of meandering of spirals is not robust against periodic stimulations. Simple phenomenological arguments are provided to explain these observations. (c) 2001 American Institute of Physics.  相似文献   

4.
针对自激振荡系统的复金兹伯格-朗道(Complex Ginzbury-Landau, 简称CGL)方程, 研究圆形环域与方形环域两种反馈控制下的螺旋波动力学。结果表明: 圆形环域反馈控制下, 螺旋波波头通常经过一段过渡漂移后进入圆形吸引子, 圆形吸引子的半径以及反馈刚启动时波头的漂移方向随环域参数呈周期性变化, 过渡漂移阶段波头轨道的平缓程度与复反馈信号模的时间函数中钟形部分的陡度有关, 且反馈增益的正负与大小也会影响受控螺旋波的动力学行为。方形环域反馈控制下的螺旋波波头的吸引子更为丰富, 主要包括方形吸引子、小的极限环吸引子、菱形吸引子以及点吸引子, 点吸引子通常位于方形环域的两条对角线上, 且波头运动随环域控制参数呈现规律性变换。  相似文献   

5.
The dynamics of spiral waves under the influences of periodic mechanical deformation are studied. Here, the mechanical deformation propagating along the medium with phase differences are considered. It is found that weak mechanical deformation may lead to resonant drift of spiral waves. The drift direction and velocity can be changed by the wave length of the deformation. Strong mechanical deformation may result in breakup of spiral waves. The characteristics of breakup are discussed. The critical amplitudes are determined by two factors, i.e. the wave length and frequency of the periodic mechanical deformation. When the wave length of mechanical deformation is comparable to the spiral wave, simulation shows that the critical amplitude is substantially increased. As the frequency of the mechanical deformation is around 1.5 times of the spiral wave, the critical amplitudes are minimal.  相似文献   

6.
The effect of an external rhythm on rotating spiral waves in excitable media is investigated. Parameters of the unperturbed medium were chosen, such that the organizing spiral tip describes meandering (hypocyclic) trajectories, which are the most general shape for the experimentally observed systems. Periodical modulation of excitability in a model of the Belousov-Zhabotinsky (BZ) reaction forces meandering spiral tips to describe trajectories that are not found at corresponding stationary conditions. For different modulation periods, two types of resonance drift, phase-locked tip motion, a spectrum of hypocyclic trajectories, and complex multifrequency patterns were computed. The computational results are complemented by experimental data obtained for periodically changing illumination of the photosensitive BZ reaction. The observed drastic deformation of the tip trajectory is considered as an efficient means to study and to control wave processes in excitable media.  相似文献   

7.
In this work, we introduce a spatiotemporal modulation for excitability into an excitable medium, the Barkley model. The modulation can make the spiral wave tip meandering. Various types of periodic spiral and quasiperiodic meandering spiral motions can be observed numerically by varying the modulation. And the theoretical analysis for the conditions of Hopf bifurcation, based on an ordinary-differential-equation (ODE) model, is applied to well explain the rich behaviors of numerical simulations.  相似文献   

8.
Spiral dynamics controlled by a weakly localized pacing around the spiral tip is investigated. Numerical simulations show two distinct characteristics when the pacing is applied with the weak amplitude for suitable frequencies: for a rigidly .rotating spiral, a transition from rigid rotation to meandering motion is observed, and for unstable spiral waves, spiral breakup can be prevented. Successfully preventing spiral breakup is relevant to the modulation of the tip trajectory induced by a localized pacing.  相似文献   

9.
In support of the spiral wave theory of reentry, simulation studies and animal models have been utilized to show various patterns of spiral wave tip motion such as meandering and drifting. However, the demonstration of these or any other patterns in cardiac tissues have been limited. Whether such patterns of spiral tip motion are commonly observed in fibrillating cardiac tissues is unknown, and whether such patterns form the basis of ventricular tachycardia or fibrillation remain debatable. Using a computerized dynamic activation display, 108 episodes of atrial and ventricular tachycardia and fibrillation in isolated and intact canine cardiac tissues, as well as in vitro swine and myopathic human cardiac tissues, were analyzed for patterns of nonstationary, spiral wave tip motion. Among them, 46 episodes were from normal animal myocardium without pharmacological perturbations, 50 samples were from normal animal myocardium, either treated with drugs or had chemical ablation of the subendocardium, and 12 samples were from diseased human hearts. Among the total episodes, 11 of them had obvious nonstationary spiral tip motion with a life span of >2 cycles and with consecutive reentrant paths distinct from each other. Four patterns were observed: (1) meandering with an inward petal flower in 2; (2) meandering with outward petals in 5; (3) irregularly concentric in 3 (core moving about a common center); and (4) drift in 1 (linear core movement). The life span of a single nonstationary spiral wave lasted no more than 7 complete cycles with a mean of 4.6+/-4.3, and a median of 4.5 cycles in our samples. Conclusion: (1) Patently evident nonstationary spiral waves with long life spans were uncommon in our sample of mostly normal cardiac tissues, thus making a single meandering spiral wave an unlikely major mechanism of fibrillation in normal ventricular myocardium. (2) A tendency toward four patterns of nonstationary spiral tip motion was observed. (c) 1998 American Institute of Physics.  相似文献   

10.
采用Greenberg-Hastings元胞自动机模型研究机械形变对心肌组织中螺旋波动力学行为的影响.数值模拟表明:对于规则网格下的稳定螺旋波,在生理性机械形变作用下,螺旋波发生漫游但不破碎;在病理性机械形变作用下,螺旋波会发生持续漫游、漫游后消失和破碎进入螺旋波湍流态三种变化.通过对比发现机械形变的振幅变化率对螺旋波的影响较大,而机械形变的角频率对螺旋波的影响较小.结合数值模拟,对心前区受到猛烈撞击会出现心颤致死及耐力运动员在发生心动过速后比一般人员更容易恢复正常进行解释.  相似文献   

11.
Nonlinear excitable systems far from equilibrium can exhibit pattern formation such as spirals, target patterns, etc. One such system is the heterogeneous catalytic reaction of CO with oxygen on platinum single crystals. It has been established that the resonant periodic forcing of spirals in such excitable systems can cause a spiral drift. Here, we investigate the effects of a linear thermal gradient on the spiral dynamics during CO oxidation on platinum (110) for the first time, both in simulations and with experiments. Our results suggest that a spatial thermal gradient established across the surface can act as an internal forcing drive and cause the spiral patterns to drift. This drift has components both parallel and perpendicular to the external gradient.  相似文献   

12.
采用元胞自动机模型研究激发介质相对不应态对螺旋波动力学行为的影响。数值模拟表明:元胞激发阈值存在一临界区间,该区间的螺旋波周期会突然增加,并存在一最大周期,在合适的系统尺寸和状态数下,螺旋波周期不再受相对不应态的影响而只取决于系统的激发阈值;相对不应态导致螺旋波“Z”型漫游、小范围无规律漫游、花瓣状漫游、锯齿状漫游、风车状漫游等复杂的波头运动。观察到稳定螺旋波、漫游螺旋波和螺旋波消失,并对产生这些现象的机制作简要的解释。  相似文献   

13.
Chemical waves are initiated in an excitable medium by resonance with local periodic forcing of the excitability. Experiments are carried out with a photosensitive Belousov-Zhabotinsky medium, in which the excitability is varied according to the intensity of the imposed illumination. Complex resonance patterns are exhibited as a function of the amplitude and frequency of the forcing. Local resonance-induced wave initiation transforms the medium globally from a quiescent excitable steady state to a periodic state of successive traveling waves.  相似文献   

14.
Feedback control of spiral waves by the phases of the spiral tip is investigated experimentally in a light-sensitive Belousov-Zhabotinsky reaction. The phases of rotation (Psi(r)) and meandering (Psi(m)) of the spiral tip are obtained in real time during experiments. It is found that, for both meandering and rigid rotating spirals, one can manipulate the spirals to move with any arbitrary paths by the feedback signals derived from Psi(r). Synchronization between meandering and rotation dynamics can be induced when both Psi(m) and Psi(r) are used simultaneously as control signals. Experimental findings are compared well with numerical simulations of the Oregonator model.  相似文献   

15.
Uniform oscillations in spatially extended systems resonate with temporal periodic forcing within the Arnold tongues of single forced oscillators. The Arnold tongues are wedge-like domains in the parameter space spanned by the forcing amplitude and frequency, within which the oscillator's frequency is locked to a fraction of the forcing frequency. Spatial patterning can modify these domains. We describe here two pattern formation mechanisms affecting frequency locking at half the forcing frequency. The mechanisms are associated with phase-front instabilities and a Turing-like instability of the rest state. Our studies combine experiments on the ruthenium catalyzed light-sensitive Belousov-Zhabotinsky reaction forced by periodic illumination, and numerical and analytical studies of two model systems, the FitzHugh-Nagumo model and the complex Ginzburg-Landau equation, with additional terms describing periodic forcing.  相似文献   

16.
潘飞  黎维新  王小艳  唐国宁 《物理学报》2015,64(21):218202-218202
通过让心肌细胞钠离子通道的触发门变量延迟打开, 使介质具有激发延迟能力, 介质延迟激发时间随控制电压和刺激频率增加而增加, 当控制电压超过一个阈值时, 延迟激发介质具有低通滤波作用:低频波可以连续通过, 而高频波不能连续通过. 本文用Luo-Rudy相I模型研究了介质延迟激发对螺旋波和时空混沌的影响, 数值模拟结果表明: 当控制电压超过阈值时, 介质的延迟激发可有效消除螺旋波和时空混沌; 从小逐渐增大控制电压, 在钙最大电导率较小情况下, 延迟激发会导致介质激发性降低, 使螺旋波漫游幅度增大, 直至传导障碍导致螺旋波消失; 当钙最大电导率较大时, 延迟激发会导致螺旋波失稳变弱, 这样当控制电压增加到一定值时, 时空混沌可以演化成漫游螺旋波, 当控制参数被适当选取时, 观察到漫游幅度大的螺旋波漫游出系统边界消失现象, 继续增大控制电压将导致时空混沌直接消失.  相似文献   

17.
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.  相似文献   

18.
19.
We numerically study the dynamics of meandering spiral waves in theexcitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. The core location and size radius of the final attractors are computed, and they change with the position of the moving measuring point in a unique way. By the Fourier Spectral analysis, we find the frequency-locked behaviors different from the
driving scheme of the external periodic force. It is also found that the meandering spiral wave can be eliminated when the moving measuring point approaches closely the boundary and its feedback gain is large enough. This offers an effective and convenient method for eliminating meandering spiral waves.  相似文献   

20.
《中国物理 B》2021,30(7):70501-070501
Removal of spiral waves in cardiac muscle is necessary because of their threat to life. Common methods for this removal are to apply a local disturbance to the media, such as a periodic forcing. However, most of these methods accelerate the beating of the cardiac muscle, resulting in the aggravation of the ventricular tachycardia, which directly threatens life. In the present study, in order to clear off spiral waves, a global pulse-disturbance is applied to the media based on three models of cardiac muscle. It is found that the spiral waves are eliminated and the frequency of the cardiac muscle is decreased in a short time, and finally, the state of the medium reaches the normal oscillation, which supports a target waves. Our method sheds light on the removal of spiral waves in cardiac muscle and can prevent the ventricular tachycardia as well as the ventricular fibrillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号