首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A sonochemical approach for the one-pot three-component synthesis of pyridoimidazoisoquinolines via by using phthalaldehyde, trimethylsilylcyanide and aminopyridines the presence of a catalytic amount of a new nanomagnetic catalyst Fe3O4@SiO2-CO-C6H4-NH2 is described. The characterization of the nanocatalyst and the product was done by various methods, such as FT-IR, SEM, EDX, TGA/DTA, NMR, MS and CHN analyses. This is the first design, preparation, characterization and application of the present core/shell nanomaterial and also the first ultrasound irradiated synthesis of the biologically and pharmaceutically important fused polycyclic compounds in ethanol as a green solvent. This novel protocol offers several advantages such as high yields, short reaction times, environmentally-friendly reaction media, easily isolation of the products, simple preparation and recoverability of the nanocatalyst by an external magnet and reusing several times without significant decrease in catalytic activity.  相似文献   

2.
单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质   总被引:5,自引:4,他引:1       下载免费PDF全文
以巯基乙酸为稳定剂,在水溶液中合成了单核/双壳结构的CdSe/CdS/ZnS纳米晶。在内核CdSe和外壳ZnS之间的内壳CdS作为晶格匹配调节层,能够很好的改善核/壳界面处的性能,而且,最外层ZnS能够最大程度地使激子受限。用TEM和XPS对纳米晶进行了表征,并且用光致发光光谱和吸收光谱对不同核壳结构的纳米晶的发光性能进行了比较,结果表明单核/双壳结构的纳米晶具有更加优异的发光特性。  相似文献   

3.
A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.
Graphical abstract A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.
  相似文献   

4.
Water-soluble cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were synthesized in aqueous solution using trisodium citrate as modifier. The crystal structure, morphology, component, and spectral properties of cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots were characterized by X-ray power diffraction, transmission electron microscope, energy dispersive X-ray analysis, infrared spectrum, ultraviolet–visible absorption spectrum, and fluorescence spectrum. The results show that the spherical citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with diameter around 3.6 nm belong to the cubic zinc blende structure. The citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots show a narrow, symmetric, and strong fluorescence emission spectrum band with narrow full width at half maximum of 53 nm, and the fluorescence quantum yield can reach up to 37.3%. The high-quality citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide core/shell/shell quantum dots with good fluorescence properties have potential for application in biological fluorescence analysis.  相似文献   

5.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   

6.
Worasak Sukkabot 《哲学杂志》2018,98(15):1360-1375
A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron–hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron–hole interactions is observed with increasing external ZnS shell size. The strong electron–hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.  相似文献   

7.
The core/shell particles consisting of polystyrene core and 3-(methacryloxypropyl)-trimethoxysilane (MPS) shell were prepared in the present study by successive seeding polymerization under kinetically controlled conditions and were characterized by particle size analyser, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM image indicated that the particles containing organic siloxane presented an evident core/shell structure. Additionally, the study of XPS also revealed that MPS could be grafted onto the surface of polystyrene microspheres and the atomic ratio of C/Si on the surface of the core/shell particles (MPS-40) was very close to the ratio of C/Si in the molecule of MPS. The surface properties of the films produced from the core/shell particles were also investigated by the static contact angle method. Compared with the homopolymer of PS, the core/shell particles were more effective to create hydrophobic surface, so, the introduction of MPS was capable of obvious increase in water repellency.  相似文献   

8.
A highly water-dispersible NaYF4:Ce/Tb (core), NaYF4:Ce/Tb@NaYF4(core/shell) and NaYF4:Ce/Tb@NaYF4@SiO2 (core/shell/SiO2) nanoparticles (NPs) were synthesized via a general synthesis approach. The growth of an inert NaYF4 and silica shell (~14 nm) around the core-NPs resulted in an increase of the average size of the nanopaticles as well as broadening of their size distribution. The optical band-gap energy slightly decreases after shell formation due to the increase the crystalline size. To optimize the influence of shell formation a comparative analysis of photoluminescence properties (excitation, emission, and luminescence decay time) of the core, core/shell, and core/shell/SiO2 NPs were measured. The emission intensity was significantly enhanced after inert shell formation around the surface of the core NPs. The Commission International de l’Eclairage chromaticity coordinates of the emission spectrum of core, core/shell, core/shell/SiO2 NPs lie closest to the standard green color emission at 545 nm. By quantitative spectroscopic measurements of surface-modified core-NPs, it was suggested that encapsulation with inert and silica layers was found to be effective in retaining both luminescence intensity and dispersibility in aqueous environment. Considering the high aqueous dispersion and enhanced luminescence efficiency of the core-NPs make them an ideal luminescent material for luminescence bioimaging and optical biosensors.  相似文献   

9.
采用乙酰丙酮铜为原料, 通过化学气相沉积大批量制备出Cu/C核/壳纳米颗粒和纳米线. 研究结果表明, 通过控制沉积温度可对Cu/C核/壳纳米材料的形貌和结构进行很好的控制. 比如, 沉积温度为400 ℃时可获得直径约200 nm的Cu/C核/壳纳米线, 沉积温度为450 ℃ 时可获得直径约200 nm的Cu/C核/壳纳米颗粒和纳米棒的混合产物, 沉积温度为600 ℃时可获得直径约22 nm的Cu/C核/壳纳米颗粒. 获得的Cu/C核/壳纳米结构是由一个新颖的凝聚机理形成的, 而这种机理不同于著名的溶解-析出机理. 紫外-可见光谱和荧光光谱分析结果表明: Cu/C核/壳纳米线和纳米颗粒均在225 nm处出现Cu的吸收峰, 同时在620 和616 nm处分别出现了纳米线和纳米颗粒的表面等离子共振吸收峰. Cu/C核/壳纳米线在312 和348 nm处、 Cu/C核/壳纳米颗粒在304 和345 nm处出现荧光发射谱峰. 关键词: Cu/C核/壳结构 纳米线 纳米颗粒 光学性能  相似文献   

10.
The core/shell particles consisting of polymethyl methacrylate (PMMA) core and polydimethylsiloxane (PDMS) shell via 3-(methacryloxypropyl)-trimethoxysilane (MPS) as the medium to link the core and shell were prepared in our present study by successive seeding polymerization under kinetically controlled conditions and were characterized by FT-IR, particle size analyzer, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).The picture of optical microscope showed the clear form of PDMS-0 and PDMS-40 (the content of PDMS in the particles), which approached to monodispersed distribution. Compared with the PMMA microspheres, PDMS-40 presented an evident core/shell structure through the observation of TEM. Additionally, the study of XPS revealed that PDMS could be grafted onto the surface of PMMA particles and the atomic ratio of C/Si on the surface of PDMS-40 was very close to the ratio of C/Si in the molecule of PDMS. The surface properties of the films produced from the core/shell microspheres also were investigated by contact angle method, contrast with the homopolymer of PMMA, the core/shell particles were more effective to form hydrophobic surface and the water repellency on the surface would be better than that of PMMA.  相似文献   

11.
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.  相似文献   

12.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

13.
CdTe/CdS core/shell quantum dots (QDs) have been synthesized in an aqueous phase using thioacetamide as a sulfur source. The quantum yield was greatly enhanced by the epitaxial growth of a CdS shell, which was confirmed by X-ray photoelectron spectroscopy (XPS) results. The quantum yield of as-prepared CdTe/CdS core/shell QDs without any post-preparative processing reached 58%. The experimental results illustrate that the QDs with core/shell structure show better photostability than thioglycolic acid (TGA)-capped CdTe QDs. The cyclic voltammograms reveal higher oxidation potentials for CdTe/CdS core/shell QDs than for TGA-capped CdTe QDs, which explains the superior photostability of QDs with a core/shell structure. This enhanced photostability makes these QDs with core/shell structure more suitable for bio-labeling and imaging.  相似文献   

14.
采用密度泛函理论和自然键轨道理论结合的方法对核壳型量子点团簇(ME)4@(ME)28(M=Cd/Zn,E=Se/S)的几何结构、范德华体积、分子轨道和核层与壳层间的轨道占据进行模拟,分析不同核壳团簇结构中核与壳之间的相互作用。结果显示,核层金属原子与壳层非金属间距离大于核层非金属原子与壳层金属原子间距离,相同壳层时,Zn-Se/S键长小于Cd/Zn-Se键长,孤立的核和壳体积之和大于相应核壳构型的体积;核壳间的相互作用主要源于壳层非金属原子Se的sp杂化轨道和核层金属原子Cd/Zn的s、p及少量的d轨道相互作用。研究表明,一方面,核内原子和壳上的原子之间存在很强的化学键的作用;另一方面,在核与壳之间存在着显著的边界,表明核、壳构型有差异,核壳构型中的核与壳之间存在相互作用且二者相互影响。  相似文献   

15.
《Physics letters. A》2014,378(22-23):1667-1674
We employ a modified Metropolis Monte Carlo simulation to study the effect of bimagnetic core/shell relative dimension on exchange bias in ferromagnetic/antiferromagnetic nanoparticles. The exchange bias field is inversely proportional to the ferromagnetic shell thickness in the antiferromagnetic (core)/ferromagnetic (shell) nanoparticles, while in the nanoparticles with an opposite core/shell structure the exchange bias behavior is complex and distinguished in different ranges of the ferromagnetic core radius. The work elucidates unambiguously how the core and shell dimensions optimize the exchange bias in nanoparticles.  相似文献   

16.
The strategy to manipulate nanoscale building blocks into well-organized heterostructures is very important to both material synthesis and nanodevice applications. In this work, highly-ordered ZnO/PbS core/shell nanowire arrays were fabricated by a facile and low temperature chemical route. Large area and well-aligned ZnO nanowire arrays were firstly fabricated on conductive glass substrates, and then the synthesis of ZnO/ZnS and ZnO/PbS core/shell nanowire arrays were realized by a chemical conversion method. The morphology, structure, and composition of the obtained nanostructures were confirmed by field-emission scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction measurements. The optical properties of the synthesized nanostructures were investigated by micro-Raman and photoluminescence spectroscopy. In the synthesized ZnO/PbS core/shell nanowire arrays, the ZnO cores can provide direct conduction pathways for electron transport and PbS shells possess superior photoelectric performance. Therefore, the obtained ZnO/PbS core/shell nanostructures may have potential application in photovoltaic devices.  相似文献   

17.
通过分别生长核层与壳层制备出了ZnO/CuO核壳结构的纳米线。形貌和结构分析表明,ZnO核为单晶纳米线而CuO则以多晶形式覆盖在核层表面上。光致发光(PL)研究表明,ZnO纳米线PL强度随CuO壳层厚度的变化而变化。当壳层比较薄时ZnO的PL强度增大,这主要是由于CuO壳层对ZnO核层的修饰减少了表面态,而当壳层厚度增加到一定程度时,ZnO的PL强度不再变化,这主要是由于在核壳结构中形成了type-I型结构的原因。我们对这一现象做了详细的讨论。  相似文献   

18.
CaMoO4:Pr(core), CaMoO4:Pr@CaMoO4 (core/shell) and CaMoO4:Pr@CaMoO4@SiO2 (core/shell/shell) nanoparticles were synthesized using polyol method. X-ray diffraction (XRD), thermogravimatric analysis (TGA), UV–vis absorption, optical band gap energy analysis, Fourier transform infrared (FTIR), FT-Raman and photoluminescence (PL) spectroscopy were employed to investigate the structural and optical properties of the synthesized core and core/shell nanoparticles. The results of the XRD indicate that the obtained core, core/shell and core/shell/shell nanoparticles crystallized well at ~150 °C in ethylene glycol (EG) under urea hydrolysis. The growth of the CaMoO4 and SiO2 shell (~12 nm) around the CaMoO4:Pr core nanoparticles resulted in an increase of the average size of the nanopaticles as well as in a broadening of their size distribution. These nanoparticles can be well-dispersed in distilled water to form clear colloidal solutions. The photoluminescence spectra of core, core/shell and core/shell/shell nanoparticles show the characteristic charge transfer emission band of MoO4 2? (533 nm) and Pr3+ 4f2?→?4f2, with multiple strong 3H4?→?3P2, 1D2?→?3H4 and 3P0?→?3?F2 transitions located at ~490, 605 and 652 nm, respectively. The emission intensity of the CaMoO4:Pr@CaMoO4 core/shell and CaMoO4:Pr@CaMoO4@SiO2 core/shell/shell nanoparticles increased ~4.5 and 1.7 times,respectively, with respect to those of CaMoO4:Pr core nanoparticles. This indicates that a significant amount of nonradiative centers existing on the surface of CaMoO4:Pr@CaMoO4 core/shell nanoparticles can be eliminated by the shielding effect of CaMoO4 shells.  相似文献   

19.
The electronic properties and p-type doping mechanism of InAs/GaAs core–shell nanowires are studied by using the first-principles calculations within density-functional theory. The core–shell structure of nanowires creates one-dimensional band offset at the InAs/GaAs interface. The magnitude of band offset depends on the sizes of core and shell. We find that a highly efficient p-type doping in InAs/GaAs core–shell nanowires can be achieved by introducing the Cd-impurity into the GaAs shell, utilizing the band-offset effect. It is because the valence-band electrons can spontaneously transfer to the Cd-impurity level, resulting in one-dimensional hole gas in the InAs core of nanowires.  相似文献   

20.
CdSe/CdS core/shell nanocrystals have been synthesized through a low cost and simple two-phase thermal route. The optical spectroscopy and structural characterization evidenced the core/shell structure of the CdSe/CdS nanoparticles. The X-ray diffraction patterns of CdSe and CdSe/CdS nanoparticles exhibited peak positions corresponding to those of their bulk cubic crystal structures. The X-ray photoelectron spectroscopy data confirmed the elemental composition of the CdSe/CdS nanoparticles. The absorption spectra of core/shell nanoparticles showed red shift with respect to the core CdSe nanoparticles. The photoluminescence study indicates that the intensity of the emission maximum is considerably increased in the core/shell structure as compared with the parent material, and the capping of CdS nanoparticles with CdSe material exhibit a near band-edge emission, indicating a successful passivation by removing surface defects. The high-resolution transmission microscope images of the bare and core/shell nanoparticles ascertained the monodispersed and well-defined spherical particles. The average particle sizes for CdSe and CdSe/CdS nanoparticles are 2.5 and 5 nm, respectively, thus confirming, the larger diameter of CdSe/CdS core/shell nanostructure than the core CdSe nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号