首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an highly efficient all-fiber compact supercontinuum source that exhibits a nearly flat spectrum from 1.1 μm to 2.1 μm. This broadband infrared optical source is made-up of a highly non-linear fiber pumped by a 1.55 μm self-Q-switched Er-Brillouin nanosecond pulsed fiber laser, which in turn is pumped by a low-power 1480 nm laser diode. In this work we highlight the great potential of highly non-linear fiber for supercontinuum generation with respect to conventional dispersion-shifted fiber by demonstrating a significant 10 dB power enhancement in the short wavelength side of the supercontinuum.  相似文献   

2.
The laser properties of 1.3 μm spectral region in Nd:YAG crystal and their simultaneous dual wavelength threshold condition are investigated. Three types of high power 1.3-μm Nd:YAG quasi continuous wave (QCW) lasers, which operate at 1.319 μm or 1.338 μm single wavelength, 1.319 μm and 1.338 μm simultaneous dual wavelength, are achieved with a maximum average output power of 138 W, 132 W and 120 W, respectively.  相似文献   

3.
The low-frequency noise is a ubiquitous phenomenon and the spectral power density of this fluctuation process is inversely proportional to the frequency of the signal. We have measured the 1/f noise of a 640 × 512 pixel quantum well infrared photodetector (QWIP) focal plane array (FPA) with 6.2 μm peak wavelength. Our experimental observations show that this QWIP FPA’s 1/f noise corner frequency is about 0.1 mHz. With this kind of low frequency stability, QWIPs could unveil a new class of infrared applications that have never been imagined before. Furthermore, we present the results from a similar 1/f noise measurement of bulk InAsSb absorber (lattice matched to GaSb substrate) nBn detector array with 4.0 μm cutoff wavelength.  相似文献   

4.
We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.  相似文献   

5.
A diode-pumped high-power single-longitudinal-mode (SLM) Tm:YAG laser was investigated. To obtain a single-frequency 2 μm laser output, Fabry–Perot (F–P) etalons combined with a volume Bragg grating (VBG) were used as frequency selection devices. The transmission losses of the VBG and etalons were analyzed and the angles of F–P etalons were optimized theoretically. Considering the gains and the insertion losses, the output wavelength of the Tm:YAG laser was estimated to be 2012.47 nm. Using this method, as much as 574 mW SLM laser was obtained experimentally, corresponding to a slope-efficiency of 18.6% and an optical-to-optical efficiency of 8.2%. The output wavelength was measured to be 2012.47 nm, which was in excellent agreement with the theoretical result. The power instability was less than 1% in 30 minutes test, and the degree of the linear polarization was over 20 dB.  相似文献   

6.
A photonic-crystal tunable 1.55 μm laser diode is fitted with a wavelength monitor on its rear side. The 250-μm long laser based on a coupled-cavity design has approximately 15 nm tunability. The wavelength monitor collects and differentially feeds two-photodetecting areas, thanks to a mode conversion to a higher-order mode (a mini-stopband), followed by tunneling through a thin clad. The layout is numerically optimized to minimize unwanted reflections. Electrical cross-talk was prevented through guard rings and trenches. The correlation between wavelength and the monitor photocurrent ratio demonstrates a 10–20 GHz stabilization capability, or a 15 nm monitoring range.  相似文献   

7.
Uncooled infrared detectors (IR) on a polyimide substrate have been demonstrated where amorphous silicon (a-Si) was used as the thermometer material. New concepts in uncooled microbolometers were implemented during the design and fabrication, such as the integration of a germanium long-pass optical filter with the device-level vacuum package and a double layer absorber structure. Polyimide was used for this preliminary work towards vacuum-packaged flexible microbolometers. The detectors were fabricated utilizing a carrier wafer and low adhesion strength release layer to hold the flexible polyimide substrate during fabrication in order to increase the release yield. The IR detectors showed a maximum detectivity of 4.54 × 106 cm Hz1/2/W at a 4 Hz chopper frequency and a minimum noise equivalent power (NEP) of 7.72 × 10−10 W/Hz1/2 at a biasing power of 5.71 pW measured over the infrared wavelength range of 8–14 μm for a 35 μm × 35 μm detector. These values are comparable to other flexible microbolometers with device-level vacuum packaging which are found in literature.  相似文献   

8.
《Current Applied Physics》2010,10(2):395-400
This paper presents a 94 GHz monolithic down-converter with low conversion loss and high local oscillator (LO)-to-RF isolation using the 0.1 μm T-gate metamorphic high electron-mobility transistor (MHEMT) technology. The down-converter consists of a one-stage amplifier and a single-balanced mixer based on the high-directivity tandem coupler structure using the air-bridge crossovers, thereby amplifying the RF signals and maximizing the LO-to-RF isolation by using an inherent S12 isolation characteristic of the amplifier and good phase balance of the tandem coupler. The fabricated one-stage amplifier using a 30 μm × 2 MHEMT shows a small signal gain of 7 dB at 94 GHz. The single-balanced mixer comprising two 20 μm × 2 MHEMT Schottky diodes and the tandem coupler with an additional λ/4-length line exhibits the conversion loss less than 7.8 dB and the LO-to-RF isolation higher than 30 dB in a RF frequency range of 91–96 GHz. Two circuits designed both for a 50 Ω impedance system are integrated into the down-converter of a 2.6 × 2.5 mm2 chip size, and it shows a low conversion loss of ∼1 dB at 94 GHz and excellent LO-to-RF isolation above 40 dB in a frequency range of 90–100 GHz. This is the best isolation among the W-band monolithic down-converters reported to date.  相似文献   

9.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

10.
We propose a compact polarization splitter based on dual-elliptical-core photonic crystal fiber. Two elliptical cores are introduced to increase the difference of effective index between x-polarized and y-polarized mode and three elliptical modulation air holes are used to control the power transfer between the two cores. By optimizing the structure parameters, the length of the polarization splitter is distinctly shortened. Numerical results demonstrate that the compact splitter has the length of 775 μm and up to 50 dB extinction ratio at the central wavelength of 1.55 μm. The corresponding bandwidth of 32 nm could be achieved from the wavelength of 1.534–1.566 μm with the extinction ratio over 20 dB  相似文献   

11.
M.S. Alias  S.M. Mitani  F. Maskuriy 《Optik》2012,123(12):1051-1055
Comprehensive analysis of GaInNAs edge-emitting laser operating near 1300 nm wavelength are made to underline the behavioural features of the proposed laser device, in view of the analytical investigation for various material and device electrical-optical parameters analysis such as band diagram, material gain, quantum well emission wavelength, optical wave and mode profiles, light-current-voltage characteristic, output mode spectrum, current distribution and far-field profile. The material analysis indicates that a high quality GaInNAs active region is designed, where high material gain and photoluminescence wavelength near 1.3 μm are achieved. The device obtains low threshold current operation with lasing emission around 1.285 μm.  相似文献   

12.
A dual-wavelength ytterbium doped fiber laser with a narrowest spacing of 0.53 nm and widest spacing of 12.2 nm at 1064 nm is presented in this paper. An arrayed waveguide grating (AWG) together with an optical channel selector (OCS) have also been incorporated in the proposed setup that works as a switchable mechanism giving 23 different wavelength tunings. Producing an average output power of ?8 dB m and side mode suppression ratio (SMSR) of 59.65 dB, this dual-wavelength fiber laser is quite stable with an output power variance as low as 0.47 dB giving it an advantage due to its switching ability and stable dual-wavelength output powers.  相似文献   

13.
A. Rostami  S. Makouei 《Optik》2012,123(8):735-738
A proposal for the new single mode optical fiber containing four cladding layer with ultra low bending loss is presented. The suggested design method is based on the Genetic Algorithm optimization technique. Compared to the work reported in [1], our designed structure exhibits very small bending loss over the wide communication band (1.3–1.65 μm). Simulation results show bending loss of 6.78e?14 dB/turn at 1.55 μm for single turn of 5 mm radius. The best value reported in [1] was 2e?3 dB/turn for the same wavelength and radius of curvature.  相似文献   

14.
Shuo Liu  Shu-Guang Li  Xing-Ping Zhu 《Optik》2012,123(20):1858-1861
A novel kind of polarization splitter in dual-core elliptical holes hybrid photonic crystal fiber is proposed. Numerical results show that the splitter can reach small coupling length ratio of 0.5, for wavelength from 1.15 μm to 1.9 μm. At wavelength 1.55 μm, the extinction ratio can achieve ?64 dB and the 1.92-mm-long splitter is suggested to achieve extinction ratio better than ?10 dB, a bandwidth of 150 nm. The fiber has small coupling length ratio, small coupling length and high extinction ratio and it is more suitable for fabricating polarization splitter.  相似文献   

15.
We report the fabrication of the anti-reflective micro/nano-structure on absorbing layer of GaAs solar cell surface using an efficient approach based on one-step femtosecond laser irradiation. Morphology of the microstructures and reflectance of the cell irradiated are characterized with SEM and spectrometer to analyze the influence of laser processing parameters on the change of microstructures induced and the reflectance. It has been found that the rectangle grating micro/nano-structure with a period of 700 nm and width of 600 nm is obtained neatly with laser pulse energy of 30.5 μJ(pulse duration is 130 fs, center wavelength is 800 nm, scanning speed is 2.2 mm/s and spot diameter is 22 µm). Reflectance has been suppressed to 23.6% with rectangle structure from 33% of planar cell. In addition, simulation using a finite-difference-time domain(FDTD) method results show that the rectangle grating micro/nano-structure can effectively suppress the reflection within large wavelength ranges.  相似文献   

16.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

17.
The dependences of the incident angle and thermal durability of a tungsten silicide (WSi) wire-grid polarizer were examined. A WSi grating with a 0.5 fill factor, 260 nm depth, and 400 nm period was formed on a Si surface using two-beam interference and dry etching. The TM transmission spectrum of the fabricated element was greater than 60% at the incident angle of θ = 40° (the angle between the incident direction and the perpendicular axis to the grating direction) in the 4–10 μm wavelength range. An extinction ratio of 22.2 dB was achieved at 2.5 μm wavelength. Additionally, results show that this polarizer has higher thermal resistance than that of commercial infrared polarizers. Therefore, this polarizer is effective for taking a polarized thermal image of high temperatures.  相似文献   

18.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

19.
Erbium-ytterbium co-doped fiber amplifier with wavelength-tuned Yb-band loop resonator is presented. The amplified spontaneous emission (ASE) from Yb ions is utilized to stimulate a laser emission at several wavelengths from the 1 μm band in the 1550 nm amplifier. The wavelength of this lasing is tuned by introducing a fiber Bragg grating (FBG). The results show, that the overall efficiency of the amplifier at nominal 1550 nm wavelength can be increased by introducing a feedback loop with 1040 nm and 1050 nm FBG. This loop also protects the Er/Yb amplifier from parasitic lasing at 1 μm and allows significant output power scaling without risk of self-pulsing.  相似文献   

20.
A simple, continuously tunable dual-wavelength erbium-doped fiber ring laser (TDEDFL) structure for applications in high-speed communication systems is proposed and experimentally demonstrated. The dual-wavelength tuning range is 58 nm covering both the C-band and L-band from 1547 to 1605 nm. We can not only obtain a 45% improvement over previously reported tuning ranges, but also tune the wavelength of each lasing output independently. The power equalization of the dual-wavelength outputs is less than 1.5 dB. We obtain extremely stable power variation and wavelength fluctuation at room temperature. Using this fiber laser, a 10-Gb/s data transmission over a 25-km single-mode fiber (SMF) can be made available with a power penalty of 0.5 dB is demonstrated with this laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号