首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review our recent theoretical advances in the dynamics of Bose-Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross-Pitaevskii equations are developed to study the nonlinear dynamics of Bose-Einstein condensates. Analytically, we present the integrable conditions for the Gross-Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose-Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose-Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose-Einstein condensates.  相似文献   

2.
王强  文林  李再东 《中国物理 B》2012,21(8):80501-080501
We consider two coupled Gross-Pitaevskii equations describing a two-component Bose-Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential,and investigate the dynamics of vector solitons.By using a direct method,we construct a novel family of vector soliton solutions,which are the linear combination between dark and bright solitons in each component.Our results show that due to the superposition between dark and bright solitons,such vector solitons possess many novel and interesting properties.The dynamics of vector solitons can be controlled by the Feshbach resonance technique,and the vector solitons can keep the dynamic stability against the variation of the scattering length.  相似文献   

3.
4.
We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear Schr odinger equations with the variational method and the imaginary time evolution method,fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength.The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.  相似文献   

5.
We obtain the integrable relation for the one-dimensional nonlinear Schrödinger equations which describes the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a harmonic potential. The exact one- and two-soliton solutions are constructed analytically by using the Hirota method. Then we further discuss the dynamics of the one soliton and the interactions between two solitons in currently experimental conditions.  相似文献   

6.
We investigate one-parameter families of two-dimensional bright spinning solitons (ring vortices) in dispersive media combining cubic self-focusing and quintic self-defocusing nonlinearities. In direct simulations, the spinning solitons display a symmetry-breaking azimuthal instability, which leads to breakup of a soliton into a set of fragments, each being a stable nonspinning soliton. The fragments fly out tangentially to the circular crest of the original vortex ring. If the soliton’s energy is large enough, the instability develops so slowly that the spinning solitons may be regarded as virtually stable ones, in accord with earlier published results. Growth rates of perturbation eigenmodes with different azimuthal “quantum numbers” are calculated as a function of the soliton’s propagation constant κ from a numerical solution of the linearized equations. As a result, a narrow (in terms of κ) stability window is found for extremely broad solitons with values of the “spin” s=1 and 2. However, analytical consideration of a special perturbation mode in the form of a spontaneous shift of the soliton’s central “bubble” (core of the vortex embedded in a broad soliton) demonstrates that even extremely broad solitons are subject to an exponentially weak instability against this mode. In actual simulations, a manifestation of this instability is found in a three-dimensional soliton with s=1. In the case when the two-dimensional spinning solitons are subject to tangible azimuthal instability, the number of the nonspinning fragments into which the soliton splits is usually, but not always, equal to the azimuthal number of the instability eigenmode with the largest growth rate.  相似文献   

7.
The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is considerably affected by the presence of a thermal cloud and the dynamical depletion of the condensate. Our numerical results, based on the time-dependent Hartree-Fock-Bogoliubov theory, demonstrate the collapse of the attractively interacting BEC via collisional emission of atom pairs into the thermal cloud, which splits the (quasi-one-dimensional) BEC soliton into two partially coherent solitonic structures of opposite momenta. These incoherent matter waves are analogous to optical random-phase solitons.  相似文献   

8.
We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.  相似文献   

9.
We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-onedimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice.It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice.The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter,and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes.  相似文献   

10.
文林  梁毅  周晶  余鹏  夏雷  牛连斌  张晓斐 《物理学报》2019,68(8):80301-080301
利用变分近似及基于Gross-Pitaevskii方程的直接数值模拟方法,研究了自旋-轨道耦合玻色-爱因斯坦凝聚体中线性塞曼劈裂对亮孤子动力学的影响,发现线性塞曼劈裂将导致体系具有两个携带有限动量的静态孤子,以及它们在微扰下存在一个零能的Goldstone激发模和一个频率与线性塞曼劈裂有关的谐振激发模.同时给出了描述孤子运动的质心坐标表达式,发现线性塞曼劈裂明显影响孤子的运动速度和振荡周期.  相似文献   

11.
Zai-Dong Li 《Annals of Physics》2007,322(8):1961-1971
We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schrödinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.  相似文献   

12.
This paper presents a family of soliton solutions of the one-dimensional nonlinear Schrdinger equation which describes the dynamics of the dark solitons in Bose-Einstein condensates with an arbitrary x-dependent external potential.The obtained results show that the external potential has an important effect on the dark soliton dynamical characteristics of the condensates.The amplitude,width,and velocity of the output soliton are relative to the source position of the external potential.The smaller the amplitude of the soliton is,the narrower its width is,and the slower the soliton propagates.The collision of two dark solitons is nearly elastic.  相似文献   

13.
We show that the dark soliton of the Gross-Pitaevskii equation (GPE) that describes the Bose-Einstein condensate (BEC) density of a system of weakly repulsive bosons, also describes that of a system of strongly repulsive hard core bosons at half filling. As a consequence of this, the GPE soliton gets related to the magnetic soliton in an easy-plane ferromagnet, where it describes the square of the in-plane magnetization of the system. These relationships are shown to be useful in understanding various characteristics of solitons in these distinct many-body systems.  相似文献   

14.
We consider the perturbed mKdV equation \({\partial_t u = -\partial_x (\partial_x^2u + 2u^3- b(x,t)u)}\) , where the potential \({b(x,t)=b_0(hx,ht), 0 < h \ll 1 }\) , is slowly varying with a double soliton initial data. On a dynamically interesting time scale the solution is \({ {\mathcal{O}}(h^2) }\) close in H 2 to a double soliton whose position and scale parameters follow an effective dynamics, a simple system of ordinary differential equations. These equations are formally obtained as Hamilton’s equations for the restriction of the mKdV Hamiltonian to the submanifold of solitons. The interplay between algebraic aspects of complete integrability of the unperturbed equation and the analytic ideas related to soliton stability is central in the proof.  相似文献   

15.
We study the appearance of discrete gap solitons in a nonlinear Schrödinger model with a periodic on-site potential that possesses a gap evacuated of plane-wave solutions in the linear limit. For finite lattices supporting an anti-phase (q=π/2) gap edge phonon as an anharmonic standing wave in the nonlinear regime, gap solitons are numerically found to emerge via pitchfork bifurcations from the gap edge. Analytically, modulational instabilities between pairs of bifurcation points on this “nonlinear gap boundary” are found in terms of critical gap widths, turning to zero in the infinite-size limit, which are associated with the birth of the localized soliton as well as discrete multisolitons in the gap. Such tunable instabilities can be of relevance in exciting soliton states in modulated arrays of nonlinear optical waveguides or Bose-Einstein condensates in periodic potentials. For lattices whose gap edge phonon only asymptotically approaches the anti-phase solution, the nonlinear gap boundary splits in a bifurcation scenario leading to the birth of the discrete gap soliton as a continuable orbit to the gap edge in the linear limit. The instability-induced dynamics of the localized soliton in the gap regime is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsically localized modes (discrete breathers) from the extended out-gap soliton reveals a phase transition of the solution.  相似文献   

16.
Sk Golam Ali 《Annals of Physics》2009,324(6):1194-1210
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution they exhibit decay and revival.  相似文献   

17.
我们利用解析和数值的方法,研究从Bardeen-Cooper-Schrieffer(BCS)超流到玻色-爱因斯坦凝聚(BEC)渡越的过程里超流费米气体中两维(2D)孤子的形成和演化.基于超流流体力学方程,在准二维和长波近似下,推导描述弱非线性激发带正色散项的Kadomtsev-Petviashvili方程;给出整个BCS-BEC渡越的2D孤子解,以及数值求解孤子在囚禁势中的演化.数值结果显示由于Snake(横向)不稳定性,大振幅的暗孤子会衰变为大量涡旋-反涡旋对,并且这个不稳定性在不同超流区域不同.  相似文献   

18.
徐天赋  张玉峰  许磊超  李再东 《中国物理 B》2017,26(10):100304-100304
We study the moving bright solitons in the weak attractive Bose–Einstein condensate with a spin–orbit interaction. By solving the coupled nonlinear Schr ?dinger equation with the variational method and the imaginary time evolution method,two kinds of solitons(plane wave soliton and stripe solitons) are found in different parameter regions. It is shown that the soliton speed dominates its structure. The detuning between the Raman beam and energy states of the atoms decides the spin polarization strength of the system. The soliton dynamics is also studied for various moving speed and we find that the shape of individual components can be kept when the speed of soliton is low.  相似文献   

19.
We make use of a coordinate-free approach to implement Vakhitov-Kolokolov criterion for stability analysis in order to study the effects of three-body atomic recombination and lattice potential on the matter-wave bright solitons formed in Bose-Einstein condensates. We analytically demonstrate that (i) the critical number of atoms in a stable BEC soliton is just half the number of atoms in a marginally stable Townes-like soliton and (ii) an additive optical lattice potential further reduces this number by a factor of √1 − bg 3 with g 3 the coupling constant of the lattice potential and b = 0.7301.   相似文献   

20.
We study soliton oscillations in a trapped superfluid Fermi gas across the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover. We derive an exact equation for the oscillation period in terms of observable quantities, which we confirm by solving the time-dependent Bogoliubov-de Gennes equations. Hence we reveal the appearance and dynamics of solitons across the crossover, and show that the period dramatically increases as the soliton becomes shallower on the BCS side of the resonance. Finally, we propose an experimental protocol to test our predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号