首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We study the magnetic ground state in La(2/3)Ca(1/3)Mn(1-x)Ga x O3 manganites, where a quantum critical point (QCP) has been theoretically predicted. The metallic ferromagnetic ground state for low Ga doping breaks down for x > or = 0.11, an insulating state being established at low temperatures. Long-range ferromagnetism coexists with short-range magnetic correlations in the concentration range 0.11 < or = x < or = 0.145 while only the short-range correlations survive for x > or = 0.16. We discuss the implications of such a QCP to the physics of manganites and compare to other QCP systems.  相似文献   

2.
We present a detailed analysis of the heat capacity of a near-perfect S=1/2 kagome antiferromagnet, zinc paratacamite Zn(x)Cu(4-x)(OH)(6)Cl(2), as a function of stoichiometry x-->1 and for fields of up to 9 T. We obtain the heat capacity intrinsic to the kagome layers by accounting for the weak Cu2+/Zn2+ exchange between the Cu and the Zn sites, which was measured independently for x=1 using neutron diffraction. The evolution of the heat capacity for x=0.8...1 is then related to the hysteresis in the magnetic susceptibility. We conclude that for x>0.8 zinc paratacamite is a spin liquid without a spin gap, in which unpaired spins give rise to a macroscopically degenerate ground state manifold with increasingly glassy dynamics as x is lowered.  相似文献   

3.
4.
We present a study of the magnetic properties of Zr(1-x)NbxZn2, using an Arrott plot analysis of the magnetization. The Curie temperature Tc is suppressed to zero temperature for Nb concentration xc = 0.083+/-0.002, while the spontaneous moment vanishes linearly with Tc as predicted by the Stoner theory. The initial susceptibility chi displays critical behavior for x or= xc we find that chi(-1) = chi0(-1) + aT(4/3), where chi0(-1) vanishes as x-->xc. The resulting magnetic phase diagram shows that the quantum critical behavior extends over the widest range of temperatures for x=xc, and demonstrates how a finite transition temperature ferromagnet is transformed into a paramagnet, via a quantum critical point.  相似文献   

5.
We report measurements of the inverse squared magnetic penetration depth, lambda(-2)(T), in Pr(2-x)Ce(x)CuO(4-delta) (0.115< or =x < or =0.152) superconducting films grown on SrTiO3 (001) substrates coated with a buffer layer of insulating Pr2CuO4. lambda(-2)(0), T(c), and normal-state resistivities of these films indicate that they are clean and homogeneous. Over a wide range of Ce doping, 0.124< or =x < or =0.144, lambda(-2)(T) at low T is flat: it changes by less than 0.15% over a factor of 3 change in T, indicating a gap in the superconducting density of states. Fits to the first 5% decrease in lambda(-2)(T) produce values of the minimum superconducting gap in the range of 0.29< or =Delta(min)/k(B)T(c)< or =1.01.  相似文献   

6.
The crystal structure of Ca(2-x)Sr(x)RuO(4) with 0.2 < or = x < or = 1.0 has been studied by diffraction techniques and by high resolution capacitance dilatometry as a function of temperature and magnetic field. Upon cooling in zero magnetic field, the crystal structure and the octahedra shrink along the c direction and elongate in the a and b planes, whereas the opposite occurs upon cooling at high field (x = 0.2 and 0.5). These findings yield evidence for an orbital rearrangement driven by temperature and magnetic field, which accompanies the metamagnetic transition at low temperature. The temperature and magnetic-field dependencies are found to be governed by the same energy scale.  相似文献   

7.
The Particle Data Group gives an upper bound on the photon mass m < 2 x 10(-16) eV from a laboratory experiment and lists, but does not adopt, an astronomical bound m < 3 x 10(-27) eV, both of which are based on the plausible assumption of large galactic vector potential. We argue that the interpretations of these experiments should be changed, which alters significantly the bounds on m. If m arises from a Higgs effect, both limits are invalid because the Proca vector potential of the galactic magnetic field may be neutralized by vortices giving a large-scale magnetic field that is effectively Maxwellian. If, on the other hand, the galactic magnetic field is in the Proca regime, the very existence of the observed large-scale magnetic field gives m(-1) > or = 1 kpc, or m < or = 10(-26) eV.  相似文献   

8.
Bandgap opening due to strain engineering is a key architect for making graphene’s optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.  相似文献   

9.
Magnetic zigzag edges of graphene are considered as a basis for novel spintronics devices despite the fact that no true long-range magnetic order is possible in one dimension. We study the transverse and longitudinal fluctuations of magnetic moments at zigzag edges of graphene from first principles. We find a high value for the spin wave stiffness D=2100 meV A2 and a spin-collinear domain wall creation energy E(dw)=114 meV accompanied by low magnetic anisotropy. Above the crossover temperature T(x) approximately 10 K, the spin correlation length xi proportional, variantT(-1) limits the long-range magnetic order to approximately 1 nm at 300 K while below T(x), it grows exponentially with decreasing temperature. We discuss possible ways of increasing the range of magnetic order and effects of edge roughness on it.  相似文献   

10.
We study the effects of RuO6 rotation on Ru 4d band structures in metallic Ca2-xSrxRuO4 (0.5 < or = x < or = 2) by first-principles electronic structure calculations. We show that the RuO6 rotation leads to the strong hybridization between dxy and dx2-y2 bands, resulting in orbital-dependent changes in the band structure. The dxy band near the Fermi level is significantly modified and thereby a severely reconstructed Fermi surface with nested sections appears at x=0.5. In contrast, the dyz and dzx bands are found to be insensitive to the rotational distortions induced by the Ca substitution. Our results imply that the progressive changes in the magnetic, optical, and thermal properties of Ca2-xSrxRuO4 are associated with the dxy band.  相似文献   

11.
We have detected the four 18 cm OH lines from the z approximaetely 0.765 gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time. We compare the HI and OH main line absorption redshifts of the different components in the z approximately 0.765 absorber and the z approximately 0.685 lens toward B0218 + 357 to place stringent constraints on changes in F triple-bond g(p)[alpha(2)/mu](1.57). We obtain [DeltaF/F] = (0.44 +/- 0.36(stat) +/- 1.0(sys)t) x 10(-5), consistent with no evolution over the redshift range 0 < z < or = 0.7. The measurements have a 2sigma sensitivity of [Deltaalpha/alpha] < 6.7 x 10(-6) or [Deltamu/mu] < 1.4 x 10(-5) to fractional changes in alpha and mu over a period of approximately 6.5 G yr, half the age of the Universe. These are among the most sensitive constraints on changes in mu.  相似文献   

12.
We have measured the spin structure functions g(1) and g(2) of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized 3He target at a 15.5 degrees scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Gamma(1)(Q2)= integral (1)(0)g(1)(x,Q2)dx, Gamma(2)(Q2)= integral (1)(0)g(2)(x,Q2)dx, and d(2)(Q2)= integral (1)(0)x(2)[2g(1)(x,Q2)+3g(2)(x,Q2)]dx for the neutron in the range 0.1< or =Q2< or =0.9 GeV2 with good precision. Gamma(1)(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d(2) is nonzero over the measured range.  相似文献   

13.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Krishnamurthy  V.V.  Watanabe  I.  Nagamine  K.  Geibel  C.  Sparn  G.  Steglich  F. 《Hyperfine Interactions》1999,120(1-8):607-610
We report muon spin relaxation (μ+SR) studies on the magnetic phase diagram of Ce(Cu1-xNix)2Ge2 polycrystals for 0.5≤ x ≤ 0.8. A sharp magnetic transition, evidenced by the appearance of a fast Gaussian relaxation component σ, has been observed in the x = 0.5 alloy at 4.0 K in zero applied field. The average local field < Bμ> at the stopping sites of the muons, extracted from σ, exhibits a linear temperature dependence. We associate these features with an incommensurate spin density wave (SDW) ordering. Magnetic ordering, either long range or short range, and signatures of non-Fermi liquid behaviour have not been observed down to 2.0 K at x = 0.8. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We have performed a muon spin rotation study on polycrystalline samples of electron-doped layered manganites, La2-2xSr1+2xMn2O7 (0.4< or =x<1), in order to investigate the local magnetic structure and spin dynamics. Our results provide evidence for phase separation into A-type antiferromagnetic and charge-ordered phases for x=0.52 and spin freezing at low temperatures (T<100 K) for 0.52< or =x<0.75. A new phase diagram which includes this spin-freezing region is proposed.  相似文献   

16.
In the archetypal strongly correlated electron superconductor CeCu2Si2 and its Ge-substituted alloys CeCu2(Si1-xGex)2 two quantum phase transitions--one magnetic and one of so far unknown origin-can be crossed as a function of pressure. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (rho) power-law exponent alpha. At the lower critical point (at pcl, 1相似文献   

17.
用磁控电弧炉在氩气气氛中熔炼了Gd3Al2-xGax(x=0,0.1,0.3,0.5)系列合金.通过X射线粉末衍射和振动样品磁强计研究了样品的结构和磁熵.发现样品都是由Zr3Al2相组成的,且GdAlGa系列合金的ΔSm要比Gd3Al2的大,峰值在室温附近,温区较宽,是一种较好的磁致冷材料. 关键词:  相似文献   

18.
We describe our high-resolution measurements of the 133Cs 6p (2)P(3/2) state hyperfine structure. An optically narrowed diode laser excites perpendicularly a highly collimated atomic beam. The spectra are calibrated with a stable reference diode laser using a rf locking scheme allowing us to determine the splittings with an accuracy of < or =2 kHz, an order of magnitude better than previous results. The magnetic dipole a, electric quadrupole b, and magnetic octupole c hyperfine coupling constants are determined. The values we obtained are a=50.288 27(23) MHz, b=-0.4934(17) MHz, and c=0.56(7) kHz. This work represents the first observation of the magnetic octupole moment of the cesium nucleus. We carry out atomic-structure calculations and determine the nuclear electric quadrupole moment Q= -3.55(4) mb and nuclear magnetic octupole moment Omega=0.82(10) b x mu(N).  相似文献   

19.
《Current Applied Physics》2020,20(9):1026-1030
We have comprehensively investigated asymmetric magnetization reversal behaviors of (x-Å Co/7.7 Å Pt)5 multilayers (x = 3.1 and 4.7) with perpendicular magnetic anisotropy. Our direct observation of magnetic domain structures by means of magneto-optical microscopy reveals that the asymmetry arises both from nucleation and wall-motion processes. An asymmetric nucleation behavior is observed, which could be originated from the preexisting non-reversed domains which might have a reproducible or random spatial distribution, controllable by tuning the field profile. An asymmetric wall-motion behavior stemming from asymmetric stripe domain evolution is also observed.  相似文献   

20.
《Current Applied Physics》2018,18(11):1185-1189
Thickness-dependent magnetic domain structure of ultrathin Co wedge films (0.3 nm–1.0 nm) sandwiched by Pt layers was investigated by scanning transmission x-ray microscopy (STXM) employing X-ray magnetic circular dichroism (XMCD), utilizing elliptically polarized soft x-rays and electromagnetic fields, with a spatial resolution of 50 nm. The magnetic domain images measured at the Co L3 edge showed the evolution of the magnetic domain structures from maze-like form to the bubble-like form as the perpendicular magnetic field was applied. The asymmetric domain expansion of a 500 nm-scale bubble domain was also measured when the in-plane and perpendicular external magnetic field were applied simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号