首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Layer by layer growth of ZnO epilayers on (0001) Al2O3 substrates is achieved by radical-source molecular beam epitaxy. A thin MgO buffer, followed by a low-temperature ZnO buffer was used in order to accommodate the lattice mismatch between ZnO and sapphire. Reflection high-energy electron diffraction intensity was employed for the optimization of the ZnO growth. The surface morphology of the samples was studied with atomic force microscopy. Investigation of the nature of the influence of the MgO buffer layer on the formation of ZnO on sapphire substrate was carried out using Transmission Electron Microscopy. For the first time it was shown that a thin spinel (magnesium aluminum oxide) layer is formed on the interface of the sapphire substrate and MgO buffer layer leading to the crystalline quality improvement of the ZnO main layer. X-Ray diffractometry measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO heteroepitaxially grown on sapphire. The crystalline quality of the ZnO layers is even better than that of our previously reported layers grown employing hydrogen peroxide as an oxidant. The full width at half maximum of the XRD (0002) rocking curve is as low as 25 arc s. The influence of growth parameters (Zn/O flux ratio, temperature, etc.) on the structural properties as well as on the surface morphology of the zinc oxide layers on sapphire is investigated and discussed.  相似文献   

2.
The electrical and optical properties of ZnO thin films grown with an O2/O3 gas mixture are compared with samples grown with pure oxygen gas. The ZnO films were grown on sapphire(0001) by pulsed laser deposition. The residual background carrier concentration is reduced by using an O2/O3 gas mixture as compared to pure molecular oxygen. In particular, a one order of magnitude reduction in residual background carrier density (6.15×1016 cm-3) is achieved by using an O2/O3 gas mixture. The lower donor defect density is attributed to the generation of acceptor defects compensating for the residual donor defects. Photoluminescence results show that the deep level emission increased and the band edge emission decreased for the ZnO films grown with ozone, as compared to the samples grown with pure oxygen gas. PACS 73.61.Ga; 78.55Et; 81.05 Dz; 81.15.Fg  相似文献   

3.
In this paper, we investigated the two effects of a little H2 and NH3 gas on the properties of ZnO films grown by atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) using deionized water (H2O) and diethylzinc (DEZn) as the O and Zn sources, respectively. Experimental results showed that compared to the effect of a little H2, it could more effectively improve the surface morphology, crystalline structure, and optical quality of ZnO epilayers by adding a little NH3 gas into the growth ambient. Furthermore, by adding a little NH3 gas into the growth ambient, the hydrogen-related D0X1 (I4):3.365 eV peak disappeared in 10 K photoluminescence spectrum of ZnO films, which indicated the elimination of the unintended hydrogen impurity. The result of the Huang–Rhys factor S (0.113) showed that it was effective for reducing the probability of exciton–phonon scattering of ZnO films by adding a little NH3 gas into the growth ambient. The electron mobility of ZnO films were also significantly improved by this method with the mobility of 100 cm2V-1s-1 measured by Hall measurement at room temperature. PACS 71.55.Gs; 81.15.Gh; 78.55.-m; 78.55.Et; 68.55.-a  相似文献   

4.
Thin films of high-quality p-type Li0.15Ni0.85O (LNO) and n-type ZnO were heteroepitaxially grown on MgO(111) substrate by pulsed laser deposition technique to form transparent wide bandgap heterojunctions. The epitaxial nature of this p-LNO/n-ZnO/MgO heterojunction was confirmed to be (111)LNO||(0001)ZnO||(111)MgO (out-of-plane) and (002)LNO||(1002)ZnO||(002)MgO (in-plane) by X-ray diffraction. Optical transmittance spectrum and I–V characteristics were obtained at room temperature. The heterojunction exhibits reasonable optical transmittance of 50–60% on average in the whole infrared and visible region, and highly asymmetric electrical rectification with a turn-on voltage of about 1.0 V and a small leakage current. The highest photoresponsivity for a wavelength of 350 nm is 3.4×103 V/W when the junction is irradiated under 5 μW UV illumination. The spectral response peak is obtained in the UV region and a reasonable large responsivity is shown for this p-LNO/n-ZnO/MgO heterojunction, which suggests the possibility of an inexpensive transparent oxide UV detector in a wide variety of electronics applications. PACS 68.55.Jk; 81.05.Dz; 81.15.Fg  相似文献   

5.
ZnGa2O4 thin-film phosphors have been grown on Si(100), Al2O3(0001) and MgO(100) substrates using pulsed laser deposition. The structural characterization was carried out on a series of ZnGa2O4 films grown on various substrates under various substrate temperatures and oxygen pressures. The films grown on these substrates not only have different crystallinity and surface morphology, but also different Zn/Ga composition ratio. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular the stoichiometry ratio of Zn/Ga and the kind of substrate. The variation of Zn/Ga in the films also depends on not only the oxygen pressure but also the substrate temperature during deposition. The PL properties of pulsed laser deposited ZnGa2O4 thin films have indicated that Al2O3(0001) and MgO(100) are promising substrates for the growth of high-quality ZnGa2O4 thin films and that the luminescence brightness depends on the substrate. The luminescence spectra show a broad band extending from 350 to 600 nm and peaking at 460 nm. Received: 11 July 2002 / Accepted: 31 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +82-51-6206356, E-mail: jhjeong@pknu.ac.kr  相似文献   

6.
With the solid phase reaction between pulsed-laser-deposited (PLD) ZnO film and α-Al2O3 substrate, ZnAl2O4/α-Al2O3 complex substrates were synthesized. X-ray diffraction (XRD) spectra show that as the reaction proceeds, ZnAl2O4 changes from the initial (111)-oriented single crystal to poly-crystal, and then to inadequate (111) orientation. Corresponding scanning electron microscope (SEM) images indicate that the surface morphology of ZnAl2O4 transforms from uniform islands to stick structures, and then to bulgy-line structures. In addition, XRD spectra present that ZnAl2O4 prepared at low temperature is unstable at the environment of higher temperature. On the as-obtained ZnAl2O4/α-Al2O3 substrates, GaN films were grown without any nitride buffer using light-radiation heating low-pressure MOCVD (LRH-LP-MOCVD). XRD spectra indicate that GaN film on this kind of complex substrate changes fromc-axis single crystal to poly-crystal as ZnAl2O4 layer is thickened. For the single crystal GaN, its full width at half maximum (FWHM) of X-ray rocking curve is 0.4°. Results indicate that islands on thin ZnAl2O4 layer can promote nucleation at initial stage of GaN growth, which leads to the (0001)-oriented GaN film.  相似文献   

7.
Regular hexagonal MoS2 microflakes with high yield were grown from MoO3 precursor by a sulfurization process using S powders as sulfuration reducer. The precursors, long and smooth MoO3 microbelts, were synthesized through a direct oxidation reaction of Mo plates in air. X-ray powder diffraction and scanning electron microscopy revealed that the sulfurized products were hexagonal MoS2 with regular hexagonal flake-like morphology. The results of transmission electron microscopy examinations demonstrated that the microflakes were single crystalline MoS2. Elemental analysis by EDAX and XPS showed that the microflakes consist of Mo and S with the atomic ratio near to 0.5. Factors influencing the formation of the product were systematically studied. PACS 81.15.Gh; 81.15.Kk; 81.05.Hd; 78.67.Pt; 82.40.Ck  相似文献   

8.
This article demonstrates the first reported successful synthesis of Mg2SiO4 nanowires. We have thermally heated Au-coated Si substrates, using a quartz tube with its inner surface pre-coated with MgO nanostructures. We have characterized the sample morphologies by using scanning electron microscopy and transmission electron microscopy (TEM). X-ray diffraction analysis and high-resolution TEM observation coincidentally revealed that the nanowires were crystalline with an orthorhombic Mg2SiO4 structure. We have discussed the possible growth mechanism of Mg2SiO4 nanowires. PACS 81.07.-b; 81.05.Zx; 61.10.Nz; 68.37.Hk; 68.37.Lp  相似文献   

9.
ZnO/SiO2 coaxial nanocables have been synthesized on silicon substrates by simply evaporating zinc powder under an argon and argon/oxygen mixed atmosphere sequentially. The diameters of these nanocables vary from 50 to 100 nm and the lengths up to several millimeters. Electron microscopy and chemical composition investigations reveal that the nanocable consists of a crystalline ZnO core surrounded by an amorphous silica sheath. The electron diffraction pattern proves that the long-axis direction of ZnO cores grows along the [0001] direction. Silica nanotubes with wall structures have been obtained by the selective dissolution of the cores with hydrochloric acid. PACS 81.10.Bk; 81.05.Hd  相似文献   

10.
Nanostructured zinc oxide (ZnO) nanobelts and aluminum oxide (Al2O3) nanoribbons have been grown successfully from the vapor phase. XRD results confirmed the purity and the high quality of the formed crystalline materials. TEM images showed that ZnO nanostructures grew in the commonly known tetrapod structure with nanobelts separated from the tetrapods with an average width range of 10–30 nm and a length of about 500 nm. Al2O3 nanostructures grew in the form of nanoribbons with an average width range of 20–30 nm and a length of up to 1 μm. The catalytic oxidation of CO gas into CO2 gas over the synthesized nanostructures is also reported. Higher catalytic activity was observed for Pd nanoparticles loaded on the ZnO nanobelts (100% conversion at 270 °C) and Al2O3 nanoribbons (100% conversion at 250 °C). The catalytic activity increased in the order Cu < Co < Au < Pd for the metal-loaded nanostructures. The preparation methods could be applied for the synthesis of novel nanostructures of various materials with novel properties resulting from the different shapes and morphologies.  相似文献   

11.
High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co^2+ substituting Zn^2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9 nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures Tc above room temperature.  相似文献   

12.
Textured LixNi2-xO (LNO) thin films have been fabricated on (001)MgO substrates by pulsed laser deposition technique. The as-deposited LNO films shows a conductivity of 2.5×10-3 Ω m and possess a transmittance of about 35% in the visible region. Subsequent deposition of Sr0.6Ba0.4Nb2O6 (SBN60) thin film on these LNO-coated MgO substrates resulted in a textured SBN layer with a 〈001〉 orientation perpendicular to the substrate plane. Phi scans on the (221) plane of the SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ± 8.2° as well as ± 45° with respect to the LNO/MgO substrate. Besides the highly (00l)-orientation, the SBN films also exhibited a dense microstructure as shown by scanning electron microscopy. The electro-optic coefficient (r33) of the SBN film was measured to be 186 pm/V. On the basis of our results, we have demonstrated that the LNO film can be used as a buffer layer as well as a transparent bottom electrode for waveguide applications. The SBN/LNO heterostructure is also a suitable candidate for integrated electro-optics devices. PACS  42.79.Gn; 42.82.Et; 78.20.Ci  相似文献   

13.
ZnO active layers on ZnO buffer layers were grown at various O2/O2 + Ar flow-rate ratios by using radio-frequency magnetron sputtering. Atomic force microscopy images showed that the surface roughnesses of the ZnO active layers grown on ZnO buffer layers decreased with decreasing O2 atmosphere, indicative of an improvement in the ZnO surfaces. The type of the ZnO active layer was n-type, and the resistivity of the layer increased with increasing O2 atmosphere. Photoluminescence spectra from the ZnO active layers grown on the ZnO buffer layers showed dominant peaks corresponding to local levels in the ZnO energy gap resulting from oxygen vacancies or interstitial zinc vacancies, and the peak positions changed significantly with the O2/O2 + Ar flow rate. These results can help improve understanding of the dependences of the surface and the optical properties on the O2/O2 + Ar ratio for ZnO thin films grown on ZnO buffer layers.  相似文献   

14.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

15.
In this study, structural properties of epitaxial Ga-doped Mg0.1Zn0.9O layers grown on ZnO/α-Al2O3 templates by plasma-assisted molecular beam epitaxy have been investigated by high-resolution transmission electron microscopy (HRTEM), and high resolution X-ray diffraction (HRXRD). From analysis of the diffraction pattern, the monocrystallinity of the Mg0.1Zn0.9O layer with hexagonal structure is confirmed. The orientation relationship between Mg0.1Zn0.9O and the template is determined as (0 0 0 1)Mg0.1Zn0.9O(0 0 0 1)ZnO(0 0 0 1)Al2O3 and [ [ ]ZnO[ . The density of dislocations near the top surface layers measured by plan-view TEM is about 3.61010 cm−2, one order of magnitude higher than the value obtained for ZnO layers on α-Al2O3 with a MgO buffer. Cross-sectional observation revealed that the majority of threading dislocations are in the [0 0 0 1] line direction, i.e. they lie along the surface normal and consist of edge, screw, and mixed dislocations. Cross- sectional TEM and X-ray rocking curve experiments reveal that most of dislocations are edge dislocations. The interface of Mg0.1Zn0.9O and ZnO layers and the effect of excess Ga-doping in these layers have been also studied.  相似文献   

16.
ZnO-coated LiMn2O4 cathode materials were prepared by a combustion method using glucose as fuel. The phase structures, size of particles, morphology, and electrochemical performance of pristine and ZnO-coated LiMn2O4 powders are studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge test, and X-ray photoelectron spectroscopy (XPS). XRD patterns indicated that surface-modified ZnO have no obvious effect on the bulk structure of the LiMn2O4. TEM and XPS proved ZnO formation on the surface of the LiMn2O4 particles. Galvanostatic charge/discharge test and rate performance showed that the ZnO coating could improve the capacity and cycling performance of LiMn2O4. The 2 wt% ZnO-coated LiMn2O4 sample exhibited an initial discharge capacity of 112.8 mAh g?1 with a capacity retention of 84.1 % after 500 cycles at 0.5 C. Besides, a good rate capability at different current densities from 0.5 to 5.0 C can be acquired. CV and EIS measurements showed that the ZnO coating effectively reduced the impacts of polarization and charge transfer resistance upon cycling.  相似文献   

17.
We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.  相似文献   

18.
The dielectric parameters of calcium fluoride films grown on the Si(100) surface by solid-phase epitaxy (group 2) and without it (group 1) are analyzed. It is established experimentally that the deposition mode of CaF2 films immediately after growth of the Si buffer layer at a substrate temperature of 530°C is not suitable for producing high-quality dielectric layers. The use of solid-phase epitaxy at the initial stage of the nucleation of CaF2 layers enables the production of single crystal uniformly thick films with high dielectric properties.  相似文献   

19.
The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell for perovskites such as SrTiO3 or doped LaMnO3, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, sub-unit cell molecular or block layer growth is established, resulting in several RHEED intensity oscillations during the growth of a single unit cell. PACS 61.14.Hg; 74.76.Db; 75.70.-i; 81.15.Fg  相似文献   

20.
SrBi2Ta2O9(SBT)/LaNiO3(LNO)/Si and SBT/Pt/TiO2/SiO2/Si multilayers were fabricated by pulsed laser deposition. With Pt top electrodes, the measured remanent polarization (2Pr) of Pt/SBT/LNO/Si and Pt/SBT/Pt/TiO2/SiO2/Si capacitors was 6.5 C/cm2 and 5.2 C/cm2, respectively. Using LNO as both bottom electrodes and buffer layers, enhanced non-c-axis crystalline SBT films were induced, which resulted in a 2Pr greater than that of the Pt/SBT/Pt/TiO2/SiO2/Si capacitor. The hysteresis loop of the Pt/SBT/LNO/Si capacitor showed a great external-field-dependent horizontal shift. Using an electron-injection model, this dependence was addressed. The fatigue-free property of the Pt/SBT/LNO/Si capacitor was experimentally established, in that the non-volatile polarization decreased by less than 5% of the initial value after 1.44×109 switching cycles . PACS 77.84.Dy; 68.65.+g  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号