首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sparse decomposition based on matching pursuit is an adaptive sparse expression of the signals. An adaptive matching pursuit algorithm that uses an impulse dictionary is introduced in this article for rolling bearing vibration signal processing and fault diagnosis. First, a new dictionary model is established according to the characteristics and mechanism of rolling bearing faults. The new model incorporates the rotational speed of the bearing, the dimensions of the bearing and the bearing fault status, among other parameters. The model can simulate the impulse experienced by the bearing at different bearing fault levels. A simulation experiment suggests that a new impulse dictionary used in a matching pursuit algorithm combined with a genetic algorithm has a more accurate effect on bearing fault diagnosis than using a traditional impulse dictionary. However, those two methods have some weak points, namely, poor stability, rapidity and controllability. Each key parameter in the dictionary model and its influence on the analysis results are systematically studied, and the impulse location is determined as the primary model parameter. The adaptive impulse dictionary is established by changing characteristic parameters progressively. The dictionary built by this method has a lower redundancy and a higher relevance between each dictionary atom and the analyzed vibration signal. The matching pursuit algorithm of an adaptive impulse dictionary is adopted to analyze the simulated signals. The results indicate that the characteristic fault components could be accurately extracted from the noisy simulation fault signals by this algorithm, and the result exhibited a higher efficiency in addition to an improved stability, rapidity and controllability when compared with a matching pursuit approach that was based on a genetic algorithm. We experimentally analyze the early-stage fault signals and composite fault signals of the bearing. The results further demonstrate the effectiveness and superiority of the matching pursuit algorithm that uses the adaptive impulse dictionary. Finally, this algorithm is applied to the analysis of engineering data, and good results are achieved.  相似文献   

2.
The vibration or acoustic signal from rotating machinery with localized fault usually behaves as the form of amplitude modulation (AM) and/or frequency modulation (FM). The demodulation techniques are conventional ways to reveal the fault characteristics from the analyzed signals. One of these techniques is the time-scale manifold (TSM) ridge demodulation method with the merits of good time–frequency localization and in-band noise suppression properties. However, due to the essential attribute of wavelet ridge, the survived in-band noise on the achieved TSM will still disturb the envelope extraction of fault-induced impulses. This paper presents an improved TSM ridge demodulation method, called exchanged ridge demodulation of TSM, by combining the benefits of the first two TSMs: the noise suppression of the first TSM and the noise separation of the second TSM. Specifically, the ridge on the second TSM can capture the fault-induced impulses precisely while avoiding the in-band noise smartly. By putting this ridge on the first TSM, the corresponding instantaneous amplitude (IA) waveform can represent the real envelope of pure faulty impulses. Moreover, an adaptive selection method for Morlet wavelet parameters is also proposed based on the smoothness index (SI) in the time-scale domain for an optimal time-scale representation of analyzed signal. The effectiveness of the proposed method is verified by means of a simulation study and applications to diagnosis of bearing defects and gear fault.  相似文献   

3.
The diagnosis of train bearing defects plays a significant role in maintaining the safety of railway transport. However, the phenomenon of Doppler Effect in the acoustic signal recorded by the wayside Acoustic Defective Bearing Detector (ADBD) system leads to the difficulty for fault diagnosis of train bearings with a high moving speed. This paper proposes a double-searching solution based on improved Dopplerlet transform and Doppler transient matching to overcome the difficulty in wayside acoustic bearing diagnosis. In the solution, the first searching procedure is to extract necessary parameters of Doppler Effect under the situation with very low signal-to-noise ratio (SNR) based on an improved Dopplerlet transform. Using the obtained parameters, the Doppler Effect can be embedded into the constructed periodic Laplace wavelet transient models. Subsequently, the second searching procedure is conducted to search fault impact period of the defective bearing through an operation, called Doppler transient matching, which is to calculate the correlation coefficient between the Doppler transient model and the filtered raw signal with the Doppler Effect. The proposed double-searching algorithm can adapt to the real Doppler Effect situation and extract the exact fault impact period from the Doppler distorted signal, and thus shows powerful capability to analyze wayside acoustic signals from train bearings. The proposed wayside acoustic diagnostic scheme is verified by means of a simulated Doppler distorted signal with a very low SNR (−20 dB) and the experiments conducted on train bearings. The results indicate that the proposed algorithm is effective and has obvious advantages for ADBD system.  相似文献   

4.
This paper proposes a multi-fault detection method based on the adaptive spectral kurtosis (ASK) analysis of the vibration signal from single sensor. A theoretical model of multiple bearing faults is established in this paper. Compared with the kurtogram and protrugram techniques, the proposed method can more effectively extract signatures of multiple bearing faults even in the presence of strong background noise. The performance of the proposed method in fault detection of the rolling element bearings is validated using simulation data and experimental signals from a bearing with multiple faults and two faulty bearings.  相似文献   

5.
To extract fault features of rolling bearing vibration signals precisely, a fault diagnosis method based on parameter optimized multi-scale permutation entropy (MPE) and Gath-Geva (GG) clustering is proposed. The method can select the important parameters of MPE method adaptively, overcome the disadvantages of fixed MPE parameters and greatly improve the accuracy of fault identification. Firstly, aiming at the problem of parameter determination and considering the interaction among parameters comprehensively of MPE, taking skewness of MPE as fitness function, the time series length and embedding dimension were optimized respectively by particle swarm optimization (PSO) algorithm. Then the fault features of rolling bearing were extracted by parameter optimized MPE and the standard clustering centers is obtained with GG clustering. Finally, the samples are clustered with the Euclid nearness degree to obtain recognition rate. The validity of the parameter optimization is proved by calculating the partition coefficient and average fuzzy entropy. Compared with unoptimized MPE, the propose method has a higher fault recognition rate.  相似文献   

6.
提出了一种基于粒子滤波状态估计的滚动轴承故障识别方法,该方法主要包括故障模型建立和故障识别两个步骤。在故障模型建立部分,首先依据滚动轴承不同故障状态下的振动信号,建立对应的自回归模型,作为故障模型;在故障识别部分,将正常状态下对应的模型,转化为状态空间模型,设计粒子滤波器,然后对不同的故障状态进行估计,提取其残差的相关特征,并结合模型参数特征应用BP神经网络识别算法进行故障识别。最后以美国凯斯西储大学的滚动轴承振动数据为例,验证了该方法的有效性。  相似文献   

7.
吕金龙  黄细霞  吴晓越 《应用声学》2017,25(7):43-46, 50
对起重机负载电机进行了研究,采用西门子公司的S7-200 SMART PLC采集负载电机的机械振动信号,通过工业Wi-Fi无线模块以无线数据包的形式将采集的数据汇总到上位机LabVIEW监测平台。上位机的LabVIEW监测平台对电动机振动信号进行相关性和频谱分析,将实时振动数据频谱信号和已知常见负载电机的轴承外圈故障、轴承内环故障和滚子故障三种典型的故障状态频谱信号进行相关性运算,得到实时信号与已知状态的相关系数;提出了以相关系数作为故障诊断判定阈值的方法进行故障诊断,实现了对起重机状态进行监测以及监控信息发布。  相似文献   

8.
Spectral analysis techniques to process vibration measurements have been widely studied to characterize the state of gearboxes. However, in practice, the modulated sidebands resulting from the local gear fault are often difficult to extract accurately from an ambiguous/blurred measured vibration spectrum due to the limited frequency resolution and small fluctuations in the operating speed of the machine that often occurs in an industrial environment. To address this issue, a new time-domain diagnostic algorithm is developed and presented herein for monitoring of gear faults, which shows an improved fault extraction capability from such measured vibration signals. This new time-domain fault detection method combines the fast dynamic time warping (Fast DTW) as well as the correlated kurtosis (CK) techniques to characterize the local gear fault, and identify the corresponding faulty gear and its position. Fast DTW is employed to extract the periodic impulse excitations caused from the faulty gear tooth using an estimated reference signal that has the same frequency as the nominal gear mesh harmonic and is built using vibration characteristics of the gearbox operation under presumed healthy conditions. This technique is beneficial in practical analysis to highlight sideband patterns in situations where data is often contaminated by process/measurement noises and small fluctuations in operating speeds that occur even at otherwise presumed steady-state conditions. The extracted signal is then resampled for subsequent diagnostic analysis using CK technique. CK takes advantages of the periodicity of the geared faults; it is used to identify the position of the local gear fault in the gearbox. Based on simulated gear vibration signals, the Fast DTW and CK based approach is shown to be useful for condition monitoring in both fixed axis as well as epicyclic gearboxes. Finally the effectiveness of the proposed method in fault detection of gears is validated using experimental signals from a planetary gearbox test rig. For fault detection in planetary gear-sets, a window function is introduced to account for the planet motion with respect to the fixed sensor, which is experimentally determined and is later employed for the estimation of reference signal used in Fast DTW algorithm.  相似文献   

9.
轴承故障振动信号具有非平稳、非线性特征,且可视为多个调幅-调频分量的叠加,单分量的包络蕴含了轴承的故障特征。局部特征尺度分解可将振动信号准确分解为多个内禀尺度分量之和,某些分量能清晰反映轴承的运行状态,根据包络谱可进行故障诊断。为了准确筛选有用分量,提出了基于滑动峭度相关性准则的分量筛选方法。首先,对信号进行局部特征尺度分解,得到若干个内禀尺度分量;然后,对分量和原始信号分别计算滑动峭度,生成时间序列;最后,依据分量滑动峭度序列与原始信号滑动峭度序列的互相关系数筛选有用分量。通过轴承内圈故障数据分析发现:有用分量与非有用分量之间的滑动峭度互相关系数比互相关系数差异明显,区分度更大,有益于分量的分类、筛选。  相似文献   

10.
Considering the random impulses of mechanical noise and the limitations involved while identifying mechanical fault impulse signals via traditional measurement indices of signal-to-noise ratio, which require the characteristic frequency to be known in advance, this study proposes an adaptive unsaturated stochastic resonance method employing maximum cross-correlated kurtosis as the signal detection index. The proposed method combines the features of a cross-correlated coefficient to indicate periodic fault transients and those of spectrum kurtosis to locate these transients in the frequency domain. Actual vibration signals collected from motor and gear bearings subjected to heavy noise are used to demonstrate the effectiveness of the proposed method. Through a coarse tree-based machine learning method, the proposed method is verified to be more suitable for explaining the periodic impulse components of bearing signals, as compared to the ensemble empirical mode decomposition denoising method and unsaturated stochastic resonance using the kurtosis-intercorrelation index.  相似文献   

11.
Considering that the vibration signal of rolling bearing is very weak and difficult to be extracted under the working environment noise, a two-dimensional asymmetric bistable system (TDAB) is proposed. The system is coupled by two systems, and the weak signal is enhanced by adjusting the control system (monostable system) to adjust the controlled system (asymmetric bistable system). First, under the condition of adiabatic approximation system, the signal-to-noise ratio (SNR) is deduced, and analyzes the influence of different system parameters on the shape of potential function. Then the effects of each parameter on the SNR of the system are analyzed theoretically. Finally, combined with the adaptive intelligent algorithm, the parameters of the controlled system are optimized, and then the coupling coefficient and control system parameters are adjusted to obtain better system performance. The TDAB system obtained is applied to different bearing fault diagnosis and compared with different coupling systems. The experimental results show that the method can extract the characteristic frequency effectively and has good spectrum amplification performance and anti-noise capability. It is proved that the TDAB system can also have good detection effect in practical application.  相似文献   

12.
余永增 《应用声学》2018,37(6):889-894
为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提取出特征信号并做出其局部Hilbert边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。  相似文献   

13.
We propose an adaptive data acquisition technique that depends on the object to be imaged in magnetic resonance (MR) imaging. In this paper, we employed a matching pursuit (MP) algorithm to achieve the adaptive data acquisition. Since the matching pursuit is a greedy algorithm to find RF and gradient waveforms which are the best match for an object-signal, the signal can be decomposed with a few iterations and thereby lead reduction of imaging time in MR. To adopt the matching pursuit algorithm to the adaptive data acquisition in MRI, we have designed a dictionary which contains a windowed Fourier basis set. Because the basis set is localized spatially, the image signal could be divided into segmented signals so that matching pursuit with the segmented signals could lead to effective and object-dependent data acquisition. To verify the proposed technique, computer simulations and experiments are performed with a 1.0 T whole body MRI system.  相似文献   

14.
In this paper the vibration analysis for local faults and transient phenomena detection, using multiwavelet systems, is developed. Unlike the scalar wavelet systems, in which their coefficients are scalar parameters, the transformation coefficients of multiwavelet systems are vector valued, and their calculation requires specialized techniques. In this investigation, having considered the technique used to obtain the scalar wavelet system coefficients, the transformation coefficients of the multiwavelet system are calculated, and by applying the method to artificial vibration signals, decomposition of the signal into different multiscale and multiwavelet functions (as introduced by Donovan, Geronimo, Hardin and Massopust) is examined, as well as the capability of this multiwavelet system for transient phenomena detection. By analyzing the vibration signal of a faulty gearing system the applicability of Donovan, Geronimo, Hardin and Massopust multiwavelet system for local fault detection of the mechanical systems is shown. The results confirm that using the multiwavelet system, not only can the fault in the gearing system be diagnosed, but also its location can be determined precisely.  相似文献   

15.
Rolling element bearings are widely used in rotating machinery. Its unexpected failure may result in machine breakdown. Whenever a bearing suffers a localized fault, the transients with a potential cyclic characteristic are generated by the rollers striking the localized fault. This phenomenon is an early bearing fault feature. Therefore, the extraction of the transients is beneficial to the identification of the early bearing fault. In this paper, a novel adaptive wavelet stripping algorithm (AWSA) is proposed to extract the simulated transients from an original bearing fault signal. Firstly, the parametric model of anti-symmetric real Laplace wavelet (ARLW) or impulse response wavelet (IRW) is built to approximate the real transients. Then, with the aid of wavelet correlation filtering analysis, the simulated transients with the optimal frequency, damping coefficient and delay time are adaptively peeled from the original bearing fault signal. The spatial reconstruction of the simulated transients reflects the random occurrence of the real transients. In order to boost the computing time of the AWSA, an enhanced AWSA is developed. At last, the bearing fault signals collected from an experimental machine and an industrial machine are used to validate the effectiveness of the AWSA. The results show that the AWSA can adaptively peel the simulated transients from the original bearing fault signals. A comparison with a periodic multi-transient model is conducted to show that the AWSA is better to extract the random characteristics of the real transients.  相似文献   

16.
为了解决傅里叶变换难以兼顾信号在时域和频域中的全貌和局部化特征以及支持向量机惩罚参数 和核函数参数 选取的问题,提出了基于小波包和GA-SVM的轴承故障诊断方法。首先通过实验采集多种工况下故障轴承和正常轴承的振动信号,从振动信号中提取能够表征轴承运行状态的时频域特征以及基于小波包分析的特征向量来作为GA-SVM的输入,然后在SVM的基础上,针对SVM的惩罚参数和核函数参数在不同应用场景下的取值难以确定的特性,采用了遗传算法对支持向量机进行参数优化的GA-SVM算法进行模式识别。实验结果显示,基于小波包和GA-SVM的轴承故障诊断方法比SVM和BP都具有更高的识别精度。  相似文献   

17.
Stochastic resonance (SR) is an important approach to detect weak vibration signals from heavy background noise. In order to increase the calculation speed and improve the weak feature detection performance, a new bistable model has been built. With this model, an adaptive and fast SR method based on dyadic wavelet transform and least square system parameters solving is proposed in this paper. By adding the second-order differential item into the traditional bistable model, noise utilization can be increased and the quality of SR output signal can be improved. The iteration algorithm for implementing the adaptive SR is given. Compared with the traditional adaptive SR method, this algorithm does not need to set up the searching range and searching step size of the system parameters, but only requires a few iterations. The proposed method, discrete wavelet transform and the traditional adaptive SR method are applied to analyzing simulated vibration signals and extracting the fault feature of a rotor system. The contrastive results verify the superiority of the proposed method, and it can be effectively applied to weak mechanical fault feature extraction.  相似文献   

18.
徐舜  刘郁林  柏森 《应用声学》2008,27(3):173-180
盲分离算法能在缺少混合系统参数的条件下仅由观测信号估计初始源,但分离信号存在固有的排列模糊性,这往往导致两次批处理过程中同一信号"对不准",因此很难获得连续的源信号。本文针对盲声源分离中存在的相同问题,根据语音和其他音频信号的特征差异,提出一种修正的自相关函数并以其值作为一个特征基元来表征声音信号的时序相关特性,同时用平均声门波形状参数作为另一个特征基元来表征语音产生的生理效应。以这两个参数作为识别不同音频信号的二维模式特征,采用一种模糊聚类算法提取多路盲分离语音。本方法有效克服了批处理盲声源分离中的信号排列顺序的不确定性,并通过选择合适的阈值提取多路连续语音。仿真给出了5路混合音频信号中盲提取两路连续语音的实验结果。  相似文献   

19.
For the adjustable parameters stochastic resonance system, the selection of the structural parameters plays a decisive role in the performance of the detection method. The vibration signal of rotating machinery is non-linear and unstable, and its weak fault characteristics are easily concealed by noise. Under strong background noise interference, the detection of fault features is particularly challenging. Therefore, a type of weak fault feature extraction method, named knowledge-based particle swarm optimization algorithm for asymptotic delayed feedback stochastic resonance (abbreviated as KPSO-ADFSR) is proposed. Through deduction under adiabatic approximation, we observe that both the asymmetric parameters, the length of delay and the feedback strength, impact the potential function. After adjusting the asymmetric parameters of the system, the output signal-to-noise ratio (SNR) is used as the fitness function, and the setting of the relationship between the noise intensity and barrier height is used as the prior knowledge of the particle swarm algorithm. Through this algorithm, the delay length and the feedback strength are optimized. This method achieves global optimization of system parameters in a short time; it overcomes the shortcomings of the traditional stochastic resonance method, which has a long convergence time and tends to easily fall into local optimization. It can effectively improve the detection of weak fault features. In the bearing rolling body pitting corrosion failure experiment and steel field engineering experiment, the proposed method could extract the characteristics of a weak fault more effectively than the traditional stochastic resonance method based on the standard particle swarm algorithm.  相似文献   

20.
Modulations present in vibration signals generated by rotating machinery might carry a lot of useful information about objects’ technical condition. It has been proven that both gearboxes and rolling element bearing (REB) faults manifest themselves as modulations. The paper describes a technique for detection of modulations in vibroacoustic signals, called modulation intensity distribution (MID), which is a function that combines multiple spectral correlation densities in one way or another, depending on the application. Additionally, the paper describes a functional obtained by integrating an MID (denoted by IMID) that has the advantage of being a function of only one frequency variable instead of two. The paper investigates the utility of the MID as an indicator for detection of the presence of rolling element bearing faults in high noise environments. For the purpose of testing, a wind turbine that suffered both advanced gearbox fault and early stage of bearing fault was chosen. Additionally, the paper undertakes the problem of application of the proposed tool in an industrial condition-monitoring system. In order to show the behavior of cyclic components generated by the turbine under study over a long period of time, the set of MIDs integrated over full range of potential carrier signals was presented as a cascade plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号