首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
陈爱喜 《光学学报》2004,24(4):68-571
纠缠态在量子计算和量子信息中起着十分重要的作用。利用部分纠缠态作为资源提出了一种方案,根据该方案,能够以某些概率成功地复制出未知的EPR(Einstein Podolsky Rosen)态和它的正交态,使得通信双方都能够获得要传送的EPR态。方案的第一步是采用部分纠缠态作为量子信道去实现EPR态的隐形传态。根据量子不可克隆定理,输入态在发送方受到破坏。方案的第二步通过引入一个辅助量子位,发送者Alice在态的配制者Victor的帮助下,将以联合概率成功地获得未知EPR态和它的正交态。从而实现了量子态的重建。  相似文献   

2.
潘兴博  陈秀波  徐刚  窦钊  李宗鹏  杨义先 《中国物理 B》2022,31(1):10305-010305
We propose a scheme where one can exploit auxiliary resources to achieve quantum multicast communication with network coding over the butterfly network.In this paper,we propose the quantum 2-pair multicast communication scheme,and extend it to k-pair multicast communication over the extended butterfly network.Firstly,an EPR pair is shared between each adjacent node on the butterfly network,and make use of local operation and classical communication to generate entangled relationship between non-adjacent nodes.Secondly,each sender adds auxiliary particles according to the multicast number k,in which the CNOT operations are applied to form the multi-particle entangled state.Finally,combined with network coding and free classical communication,quantum multicast communication based on quantum measurements is completed over the extended butterfly network.Not only the bottleneck problem is solved,but also quantum multicast communication can be completed in our scheme.At the same time,regardless of multicast number k,the maximum capacity of classical channel is 2 bits,and quantum channel is used only once.  相似文献   

3.
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented.  相似文献   

4.
Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Bene~ network is shown in which only one SPD is used.  相似文献   

5.
量子隐形传态的杰出安全特性使其在未来的通讯领域充满潜力.量子力学的不确定性原理和不可克隆定理禁止对量子态进行直接复制,因此,量子隐形传态将量子态划分为经典和量子两部分,信息分别经由经典和量子通道从发送者Alice传递给远方的接收者Bob,根据这两种信息,Bob实行相应操作就可以以一定的几率重建初始传送态.利用一般意义的隐形传态方案,提出一种简便的新方法实现了一个N粒子任意态的概率传态.方法采用N个非最大纠缠的三粒子GHZ态作为量子通道,避免了引入额外的辅助粒子.为了实现传态,Alice将所有粒子分成N份,对第i份的粒子对(i,xi)实行Bell测量并将结果通过经典通道通知Bob,Bob对粒子(yi,zi)进行相应的操作就可以完成第i个粒子信息的传送.当完成N次相似的重复操作后,Bob就可以准确地重建初始传送态.文中以Bell态测量为基本手段,重复的操作同时也降低了实验难度,作为一个特例,文中给出了一个两粒子任意态的传态方案.  相似文献   

6.
Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.  相似文献   

7.
A two-step quantum secure direct dialogue protocol using Einstein-Podolsky-Rosen(EPR)pair block is proposed.In the protocol,the dialogue messages are encoded on series of qubits and sent through a quantum channel directly.The security of the protocol is assured by its connection to the two-step quantum secure direct communication protocol,which has been proved secure.This protocol has several advantages.It is a direct communication protocol that does not require a separate classical communication for the ciphertext.It has high capacity as two bits of secret messages can be transmitted by an EPR pair.As a dialogue protocol,the two parties can speak to each other either simultaneously or sequentially.  相似文献   

8.
We present a quantum error correction code which protects three quantum bits (qubits) of quantum information against one erasure, i.e., a single-qubit arbitrary error at a known position. The present code has a high encoding efficiency, since only one auxiliary qubit is needed for one message qubit on average. In addition, we note that the code can also work even in a worse case that the interaction with the environment causes a leakage out of the qubit space. The code may have some applications in the storage of quantum information for small-scale quantum computing, quantum information processing, and quantum communication.  相似文献   

9.
马鸿洋  秦国卿  范兴奎  初鹏程 《物理学报》2015,64(16):160306-160306
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.  相似文献   

10.
杨宇光  温巧燕  朱甫臣 《中国物理》2007,16(7):1838-1842
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein--Podolsky--Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the `ping--pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.  相似文献   

11.
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.   相似文献   

12.
控制的量子隐形传态和控制的量子安全直接通信   总被引:6,自引:0,他引:6       下载免费PDF全文
高亭  闫凤利  王志玺 《中国物理》2005,14(5):893-897
我们提出了一个控制的量子隐形传态方案。在这方案中,发送方Alice 在监督者Charlie的控制下以他们分享的三粒子纠缠态作为量子通道将二能级粒子未知态的量子信息忠实的传给了遥远的接受方Bob。我们还提出了借助此传态的控制的量子安全直接通信方案。在保证量子通道安全的情况下, Alice直接将秘密信息编码在粒子态序列上,并在Charlie控制下用此传态方法传给Bob。Bob可通过测量他的量子位读出编码信息。由于没有带秘密信息的量子位在Alice 和Bob之间传送,只要量子通道安全, 这种通信不会泄露给窃听者任何信息, 是绝对安全的。这个方案的的特征是双方通信需得到第三方的许可。  相似文献   

13.
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.  相似文献   

14.
A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis.The receiver needs to introduce an auxiliary qubit, and performs aseries of appropriate unitary transformations on his particles.
The original state can be teleported successfully with theprobability 2cos2θ.  相似文献   

15.
提出了两套三粒子纠缠态的纯化方案.第一个方案选择部分纠缠GHZ态作为量子通道,利用具有一个控制位和一个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以最佳几率2|β|2获得最大三粒子纠缠态.第二个方案选择EPR对作为量子通道,通过利用具有一个控制位和两个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以与第一个方案相同的几率获得最大三粒子纠缠态.两个方案都可以推广到N粒子纠缠态的纯化.  相似文献   

16.
We present a scheme for quantum secure direct communication, in which the message is encoded by local unitary operations, transmitted through entangled photons, and deduced from both the sender and receiver's local measurement results. In such a scheme, only one pair of entangled photons is consumed, and there is no need to transmit the sender's qubit carrying the secret message in a public channel, in order to transmit two-bit classical information.  相似文献   

17.
We study quantum teleportation of single qubit information state using 3-qubit general entangled states. We propose a set of 8 GHZ-like states which gives (i) standard quantum teleportation (SQT) involving two parties and 3-qubit Bell state measurement (BSM) and (ii) controlled quantum teleportation (CQT) involving three parties, 2-qubit BSM and an independent measurement on one qubit. Both are obtained with perfect success and fidelity and with no restriction on destinations (receiver) of any of the three entangled qubits. For SQT, for each designated one qubit which is one of a pair going to Alice, we obtain a magic basis containing eight basis states. The eight basis states can be put in two groups of four, such that states of one group are identical with the corresponding GHZ-like states and states of the other differ from the corresponding GHZ-like states by the same phase factor. These basis states can be put in two different groups of four-states each, such that if any entangled state is a superposition of these with coefficients of each group having the same phase, perfect SQT results. Also, for perfect CQT, with each set of given destinations of entangled qubits, we find a different magic basis. If no restriction on destinations of any entangled qubit exists, three magic semi-bases, each with four basis states, are obtained, which lead to perfect SQT. For perfect CQT, with no restriction on entangled qubits, we find four magic quarter-bases, each having two basis states. This gives perfect SQT also. We also obtain expressions for co-concurrences and conditional concurrences.  相似文献   

18.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

19.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

20.
A theoretical scheme of a multiparty-controlled quantum secure direct communication is proposed. The supervisor prepares a communication network with Einstein-Podolsky-Rosen pairs and auxiliary particles. After passing a security test of the communication network, a supervisor tells the users the network is secure and they can communicate. If the controllers allow the communicators to communicate, the controllers should perform measurements and inform the communicators of the outcomes. The communicators then begin to communicate after they perform a security test of the quantum channel and verify that it is secure. The recipient can decrypt the secret message in a classical message from the sender depending on the protocol. Any two users in the network can communicate through the above processes under the control of the supervisor and the controllers. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号