首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, it is shown that the magnetic helicity dissipation per unit volume, coupled with the longitudinal conductivity, causes enhancement of the kinematic rotation of the electric (and magnetic) lines if the npe-plasma vorticity vector aligns with the electric (or the magnetic) field. In the case of a rigidly rotating npe-plasma under the influence of a strong magnetic field, the electric lines are rotating faster than the magnetic lines. It is deduced that the orthogonality of the electric and magnetic fields is an essential condition for the conduction current to remain finite in the limit of infinite electric conductivity of the npe-plasma. In this case, the magnetic field is not frozen into the npe-plasma, but the magnetic flux in the magnetic tube is conserved. The hybrid helicity is conserved if the “magneto-vorticity” vector is tangent to the level surfaces of constant entropy per baryon. The “magneto-vorticity” lines are rotating on the level surfaces of constant entropy per baryon due to the electromagnetic energy flow in the direction of the npe-plasma vorticity and the chemical potential variation locked with the kinematic rotation of the npe-plasma flow lines. In the case of an isentropic npe-plasma flow, there exists a family of timelike 2-surfaces spanned by the “magneto-vorticity” lines and the npe-plasma flow lines. In this case, the electric field is normal to such a family of timelike 2-surfaces. Maxwell like equations satisfied by “magneto-vorticity” bivector field are solved in axially symmetric stationary case. It is shown that the npe-plasma is in differential rotation in such a way that its each plasma shell (i.e., plasma surface spanned by “magneto-vorticity” lines) is rotating differentially without continually winding up “magneto-vorticity” lines frozen into the npe-plasma. It is also found that gravitational isorotation and Ferraro’s law of isorotation are intimately connected to each other because of coexistence of both the plasma vorticity and the magnetic field due to interaction between the electromagnetic field and npe-plasma flows.  相似文献   

2.
The theory of spin rotation waves (SRWs), representing excitations of a new type arising in twodimensional systems with spin-orbit interaction in an external electric field, has been developed. These intrinsic modes correspond to rotation of the magnetic moment vector in the plane formed by the electric field vector and the normal to the sample plate surface. An experimental method is proposed for detecting SRWs by measuring the frequency dependence of the magnetic susceptibility, which exhibits a resonance at the intrinsic mode frequency. A particular calculation is performed for a hopping conductivity model (for small-size polarons), but it is likely that intrinsic oscillations of the SRW type also take place for the band transport, since their appearance is related to the symmetry of the system.  相似文献   

3.
Distribution of a magnetic moment in an exchange-coupled bilayer Fe/SmCo epitaxial structure grown on a (110) MgO substrate is visualized by the magnetooptic indicator film technique. The direction and the magnitude of the effective magnetization in this structure are determined both under external magnetic fields of variable magnitude and direction and after the removal of these fields. It is shown that such a heterostructure is remagnetized by a nonuniform rotation of a magnetic moment both along the thickness of a sample and in its plane. A field antiparallel to the axis of unidirectional anisotropy gives rise to spin springs with opposite chiralities in different regions of the magnetically soft ferromagnetic layer. The contributions of these springs to the net magnetization cancel out, thus decreasing the averaged magnetic moment and the remanent magnetization without their rotation. When the external field deviates from the easy axis, the balance is violated and the sample exhibits a quasi-uniform rotation of the magnetic moment. Asymmetry in the rotation of the magnetic moment is observed under the reversal of the field as well as under repeated remagnetization cycles. It is established that a monochiral spin spring is also formed in a rotating in-plane magnetic field when the magnitude of the field exceeds the critical value. Possible mechanisms of remagnetization in this system are discussed with regard to the original disordered orientation of magnetization of the magnetically soft layer with respect to the easy axis, which is defined by the variance of unidirectional anisotropy axes of this layer on the interface.  相似文献   

4.
利用截断求和方法修正了二维简谐势阱中旋转理想玻色气体的热力学性质.对玻色-爱因斯坦凝聚(BEC)临界温度的修正表明:旋转框架下的BEC临界温度随旋转频率增大而快速趋近于零,到达势阱特征频率时,基态将会发生从BEC态到强关联非凝聚态的转变;由合成磁场引起的旋转对BEC临界温度的影响则要弱得多.对旋转导致的抗磁性的修正表明:磁化强度随旋转频率和合成磁场的增大而增强.利用截断求和方法计算的结果与考虑有限尺度效应的修正结果获得了很好的一致.  相似文献   

5.
The first results of the Dynamic Ergodic Divertor in TEXTOR, when operating in the m/n=3/1 mode configuration, are presented. The deeply penetrating external magnetic field perturbation of this configuration increases the toroidal plasma rotation. Staying below the excitation threshold for the m/n=2/1 tearing mode, this toroidal rotation is always in the direction of the plasma current, even if the toroidal projection of the rotating magnetic field perturbation is in the opposite direction. The observed toroidal rotation direction is consistent with a radial electric field, generated by an enhanced electron transport in the ergodic layers near the resonances of the perturbation. This is an effect different from theoretical predictions, which assume a direct coupling between rotating perturbation and plasma to be the dominant effect of momentum transfer.  相似文献   

6.
Below its ordering temperature (T N = 90 K), bulk bcc Eu has a helical magnetic state with propagation vectors along the three equivalent 〈100〉 directions. In contrast, epitaxial (110)Eu films exhibit a unique magnetic ordering: the domain with a magnetic helix propagating along the in-plane [001] direction vanishes on cooling, at the expense of other domains with helices propagating along [100] and [010]. This paper is devoted to the study of the stability of the magnetic domains in an external magnetic field using neutron scattering experiments and macroscopic magnetization measurements. The helix propagating along the [001] direction can be restored by the application of an external field along this direction. On the contrary, when a magnetic field is applied along an intermediate direction, specifically [10], the domain with a helix propagating along [001] is suppressed. Both effects depend on the film thickness. They are explained if one considers that, because of the low magnetic anisotropy of Eu, a helix with a propagation vector parallel to (or close to) the applied magnetic field is energetically more favourable than cycloidal structures with unchanged propagation vectors. Finally, the amplitudes of the propagation vectors and their directions (that are modified in films compared to bulk) do not vary under magnetic field.  相似文献   

7.
The effects of inhomogeneity of a magnetic field on the dispersion of kinetic Alfvén waves (KAWs) in a rotating plasma is investigated under the framework of magnetohydrodynamic theory. The magnetic field should be in a non‐uniform state if the centrifugal force is balanced only by the magnetic pressure. The inhomogeneity of the magnetic field increases the frequency of KAW and drives it into an unstable state. The growth rate of KAW varies non‐monotonously with respect to the distance. The KAW will be excited in a certain region with maximum growth rate. And the growth rate of KAW in the region near and far from the centre of rotation approaches zero. These results will be helpful in understanding the properties of KAWs in rotating astrophysical and laboratory plasmas.  相似文献   

8.
旋转电弧对火花间隙开关电极烧蚀的影响   总被引:4,自引:7,他引:4       下载免费PDF全文
 根据开关间隙放电产生的电弧在自身磁场作用下沿着开关电极表面运动的设想,设计了一个旋转电弧场畸变火花开关,研究了开关电极在大电流情况下的烧蚀情况。实验结果表明,开关的工作电压为6~30kV,开关电感0.07μH,转移电荷量35.2C/shot时,铝电极non RAG结构比RAG结构的开关电极的烧蚀情况要严重得多,黄铜电极比铝电极的烧蚀要小得多。  相似文献   

9.
顾文娟  潘靖  胡经国 《物理学报》2012,61(16):167501-167501
将铁磁共振频率看成外磁场的函数, 讨论了垂直场下磁性膜中的铁磁共振现象. 结果显示: 当外磁场平行于膜面, 并考虑磁膜具有垂直磁晶各向异性情形时, 其磁共振频率随外磁场的变化分为高频支和低频支两种情况, 具体的依赖关系取决于磁膜内磁晶的各向异性; 当外磁场垂直于膜面, 其磁共振频率随外磁场的关系仅存在一支, 一般地, 磁共振频率随外磁场的增加单调地非线性减小, 但当立方磁晶各向异性场Hk1 与单轴磁晶各向异性场Ha之比值介于2/3 < Hk1/Ha <1时, 其磁共振频率随外磁场的增加单调增加, 这与相关的实验结果一致. 研究结果表明: 磁薄膜中有无垂直于膜面的磁各向异性可以通过其磁共振谱的测量进行辨析.  相似文献   

10.
本文对核磁共振成像用的球形空心线圈磁体和环形空心线圈磁体的性能进行计算机模拟比较证明环形磁体在很多方面可以与球形磁体相比拟。由于环形磁体加工容易,调节方便,因而可以取代球形磁体作成像仪器的主要部件。  相似文献   

11.
G. Helgesen 《Physica A》1991,170(3):488-502
Polystyrene spheres of the same size (10–100μm) dispersed in ferrofluid produce voids, which have been denoted magnetic holes. A two-dimensional system of interacting magnetic holes confined between two glass plates and subject to rotating magnetic fields in the sample plane are studied in a light microscope. For low frequencies of the field rotation, the holes form pairs, which arrange themselves in a regular triangular lattice when stabilized with a weak constant field normal to the sample plane. By increasing the frequency of the rotating field, we observe that above a critical frequency, the steady forward rotation of the pairs is interrupted by backward rotations in short time intervals. Because the intervals of backward rotation occur at different times for each individual pair, disorder is introduced in the system, and the triangular lattice of pairs “melts” and forms a liquid-like structure at high rotation frequencies of the field. This “melting” transition is observed both directly and in light scattering experiments using a laser.  相似文献   

12.
A homogeneously rotating plasma disk can be formed in a radially directed Ar-arc discharge at reduced pressure with an externally applied axial magnetic field. The radial pressure distribution is measured, as well as the emitted continuum radiation and the arc voltage. With these experimental values profiles of temperature, radial and azimuthal current density, and flow velocity in the disk are evaluated. Viscosity determines the flow pattern essentially. The effects of magnetic field and rotational motion on the discharge are investigated. The disk exhibits at nonrigid rotation a strong centrifugal force and a minor Coriolis force. A weak double vortex is found to develop in the meridional plane. The electric field in the discharge is altered by the azimuthal plasma flow.  相似文献   

13.
We propose a microscopic model of a chiral polymer chain with permanent transverse dipoles interacting with an external electric field. Its behaviour has been investigated by computer simulation in the limit of weak chirality. Large-scale (tertiary) helical winding induced along the field direction has been found above a threshold field Ec, and the helix parameters have been calculated as functions of the field strength. Below Ec there is no coherent helical structure of the chain conformation. We find a characteristic scaling of the threshold and the winding radius a with the chain bending modulus , and . Received: 15 November 1997 / Accepted: 16 February 1998  相似文献   

14.
Manipulation of cold atoms by an adaptable magnetic reflector   总被引:1,自引:0,他引:1  
Adaptive optics for cold atoms has been experimentally realized by applying a bias magnetic field to a static magnetic mirror. The mirror consist of a 12-mm-diameter piece of commercial videotape, having a sine wave of wavelength 25.4 μm recorded in a single track across its width, curved to form a concave reflector with radius of curvature R=54 mm. We have studied the performance of the mirror by monitoring the evolution of a 24 μK cloud of 85Rb atoms bouncing on it. A uniform static external magnetic field was added to the mirror field causing a corrugated potential from which the atoms bounce with increased angular spread. The characteristic angular distribution of the surface normal is mapped at the peak of the bounce for atoms dropped from a height of R/2 and at the peak of the second bounce for a drop height of R/4. In a second experiment a time-dependent magnetic field was applied and the angular distribution of the cloud was measured as a function of field frequency. In this scheme we demonstrate a corrugated potential whose time-dependent magnitude behaves like a diffraction grating of variable depth. Finally a rotating field was added to generate a corrugated potential that moves with a velocity given by the product of the external field rotation frequency and the videotape wavelength. This travelling grating provides a new method of manipulation as cold atoms are transported across the surface by surfing along the moving wave. Two theoretical methods have been developed to predict the behaviour of atoms reflecting from these stationary, variable magnitude and moving corrugated potentials. A simple analytic theory provides excellent agreement for reflection from a stationary corrugated potential and gives good agreement when extended to the case of a travelling grating. A Monte Carlo simulation was also performed by brute force numeric integration of the equations of motion for atoms reflecting from all three corrugated potential cases. Received: 1 December 1999 / Revised version: 3 February 2000 / Published online: 5 April 2000  相似文献   

15.
Data for the low-frequency magnetic susceptibility of a rotating magnetic fluid measured in a permanent bias field are presented. It is found that the susceptibility of the medium resonantly grows when the rotation frequency coincides with the measuring field frequency. Reasons for and mechanisms behind this phenomenon are discussed.  相似文献   

16.
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s−1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B0 are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1-3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.  相似文献   

17.
Stabilization of the resistive wall mode (RWM) by high-speed differentially rotating conducting walls is demonstrated in the laboratory. To observe stabilization intrinsic azimuthal plasma rotation must be braked with error fields. Above a critical error field the RWM frequency discontinuously slows (locks) and fast growth subsequently occurs. Wall rotation is found to reduce the locked RWM saturated amplitude and growth rate, with both static (vacuum vessel) wall locked and slowly rotating RWMs observed depending on the alignment of wall to plasma rotation. At high wall rotation RWM onset is found to occur at larger plasma currents, thus increasing the RWM-stable operation window.  相似文献   

18.
A plasma toroid is rotated toroidally to supersonic speeds by external means. The input power maintains the rotation and also heats the plasma. The thermoelectric effect from the resulting temperature gradient creates and maintains a poloidal magnetic field against resistive decay, confining the plasma in steady state. The shear in the rotation keeps the plasma stable to MHD kinks and interchanges. Such a system has two novel advantages as a fusion device: there are no strong electromagnets needed to create the confining magnetic field, and there is effectively no limit on the field strength and, hence, no limit on the plasma pressure contained. The system has to be of a large aspect ratio, to minimize centrifugal effects, and a weak, external vertical magnetic field is needed to balance the radial hoop force.  相似文献   

19.
We study the dynamics of an overdamped paramagnetic ellipsoidal particle confined above a plane and subjected to an external rotating magnetic field. Without magnetic forcing, the Brownian ellipsoid exhibits a crossover from a short time anisotropic diffusion to a long time isotropic one. Application of an external static or rotating magnetic field enables controlling and varying the crossover time depending on the field frequency and amplitude. We combine analytical results and numerical simulations in order to explore the diffusive properties of the forced ellipsoid.  相似文献   

20.
The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号