首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
The chemistry and morphology of the carbon fiber surface are important parameters which govern the properties of the interfacial region and the adhesion between carbon fibers and polymeric matrix in carbon fiber reinforced polymers. In the presented paper the surface chemistry of the fibers is varied while the surface morphology is left unchanged. We analyze chemical functionality and morphology of carbon fiber surfaces showing different degrees of activation, together with the adhesion of these fibers to an epoxy matrix and the width of the interfacial region between fiber and matrix. An increase of the oxygen and nitrogen concentration of the fiber surface, in particular in form of carboxyl functional groups, results in a significant increase of interfacial shear strength. Also the width of the interphase, as determined by scanning force microscopy in nanomechanical mode, depends on the activation degree of the carbon fibers. However, no direct correlation between interphase width, surface chemistry and fiber matrix adhesion is found, suggesting no direct influence of interphase width on adhesion properties.  相似文献   

2.
Bing Xu  Yun Lu 《Applied Surface Science》2006,253(5):2695-2701
In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

4.
《Composite Interfaces》2013,20(8):633-644
The poor hydrolytic stability of silane interphase greatly limits the use of fiber reinforced composites (FRC) in demanding applications in which the FRC part is permanently exposed to a moist environment such as in prosthetic dentistry and orthodontics. To improve hydrolytic stability of the interphase between the matrix composed of a blend of triethyleneglycol dimethacrylate (TEGMA) and bisphenol A glycidylmethacrylate (Bis–GMA) monomers and glass or alumina oxide fibers, a two-step hydrosilylation procedure was employed. The process consisted of creating hydride intermediate on the fiber surface followed by hydrosilylation reaction attaching the unsaturated organic monomer (Bis–GMA) forming stable –Si–C bonds. Infrared spectroscopy (FTIR) confirmed formation of the hydride intermediate on the surface and then, attachment of the appropriate organic compound in the second step. The amount of deposited interphase and its stability was significantly enhanced compared to standard silanization treatment. Fracture surfaces were observed by scanning electron microscopy (SEM) before and after environmental exposure proving that the most stable interfacial bond was obtained with the two-step treated fibers. It was concluded that hydrosilylation provides a viable alternative to silanization for both glass and ceramic fibers in composites intended for applications requiring enhanced hydrolytic stability of the composite parts.  相似文献   

5.
In this work, a simple and effective method to modify the surface of single sisal fibers with G. xylinum was described. Single fiber tensile strength test, single fiber fragmentation test, thermal gravimetric analyses were conducted to assess the effects of different modification methods (unmodified, NaOH treatment and BC treatment). Fourier transform infrared spectroscopy, scanning electron microscopy and water uptake experiments were employed to characterize the resulting interfacial adhesion. It was shown that BC treatment produced better reinforced polymer composites with improved mechanical and long-term properties. The results also elucidated that BC nanofibrils formed a dense three dimensional network on single sisal fibers covering the roughened surface and filling the grooves and other surface ‘defects’ caused by NaOH modification in addition to its exposed hydroxyl groups to form hydrogen bonds with sisal fiber, all contributed to enhanced mechanical properties of sisal fibers as well as the better binding between sisal fibers and resin matrix. Moreover, this work also confirmed that internal geometrical and morphological differences exist in sisal fibers and this result is insightful for future natural fiber research about the importance of careful selection of fibers for consistent comparisons.  相似文献   

6.
《Composite Interfaces》2013,20(5-6):399-410
Textile composites have been used extensively as industrial materials because of the excellent mechanical properties resulting from the continuously oriented fiber bundle. In a study of the mechanical properties, it is important to consider the fiber/matrix interface property as for other composite materials. In a recent study, the fiber/matrix interface is regarded as an interphase that has its own material constants and thickness; consequently, the mechanical properties of a composite can be controlled by specifically designing the interphase. In this study, we applied this concept to braided composites with flexible resin as interphase for the purpose of designing the interphase. In a static tensile test, though there were no improvements in Noncut specimens (normal braided composites), but a Cut specimen (each side of the Noncut specimen was cut) with flexible interphase was improved in fracture load and displacement. The observation of the specimen edge was carried out and it was confirmed that the progress of debonding at the fiber bundle intersection was interrupted by a flexible interphase, and a matrix crack did not occur in the Cut specimen with flexible interphase. In a fiber bundle pull-out test, it was confirmed that debonding progressed not into the fiber/resin interface but into the flexible interphase in the specimen with flexible interphase, and the interfacial property at the fiber bundle intersection was improved.  相似文献   

7.
《Composite Interfaces》2013,20(6):629-650
Using thermogravimetric analysis (TGA), the thermal behavior of sisal fibers and sisal/polyester composites, fabricated by resin transfer molding (RTM), has been followed. Chemical treatments have been found to increase the thermal stability, which has been attributed to the resultant physical and chemical changes. Scanning electron microscopy (SEM) and infrared (FT-IR) studies were also performed to study the structural changes and morphology in the sisal fiber during the treatment. The kinetic studies of thermal degradation of untreated and treated sisal fibers have been performed using Broido method. In the composites, as the fiber content increases, the thermal stability of the matrix decreases. The treated fiber reinforced composites have been found to be thermally more stable than the untreated derivatives. The increased thermal stability and reduced moisture behavior of treated composites have been correlated with fiber/matrix adhesion.  相似文献   

8.
《Composite Interfaces》2013,20(3):143-156
In this paper, interphase properties of carbon fibre/epoxy resin single-fibre model and unidirectional (UD) composites are reported. To study the contribution of the carbon fibre surface chemistry and morphology and of the resin itself to the overall properties of the composites, untreated, oxidized and sized fibres are used with bi- and tetrafunctional, diglycidylether of Bisphenol A, DGEBA and tetraglycidyl 4,4'-diaminodiphenylmethane, TGDDM-based resins, cured with amine and anhydride hardeners. Adsorption measurements and single fibre contact angle experiments, as well as the pull-out test were applied to characterize the surface of carbon fibre and the interfacial shear strength with different matrices. It was shown that the presence of the size on the surface can drastically affect the wettability as well as the starting rate of the cure reaction of epoxide in the vicinity of the fibre surface, as revealed by FTIR microscopy. Different elastic-plastic behavior of model composites before debonding is found for untreated, oxidized and sized fibres, due to the various interphase structures formed. Both micro-and macromechanical properties of the composites are found to be significantly affected by the matrix properties. The role of the surface treatment of fibers becomes especially important in high performance resin systems.  相似文献   

9.
By means of three-dimensional finite element method (FEM) which is based upon the micro-mechanical model of fiber-reinforced composites, this paper selects representative volume elements and studies the effect of the five factors, namely, cooling rate, matrix elasticity modulus, fiber elasticity modulus, interphase elasticity modulus and fiber volume fraction, on the interphase thermal residual stress and its distribution law in epoxy resin NPEF-170/unidirectional glass fiber composites. The results indicate that thermal residual stress is mainly distributed on the fiber and the matrix of neighboring interphase; the thermal residual stress on the fiber and the matrix declines as the distance to the interphase layer grows; and it tends to zero at the distance of 1.5 times the radius of the fiber away from the interphase. The increase in any of the four factors, namely, cooling rate, matrix elasticity modulus, fiber elasticity modulus, and fiber volume fraction would trigger the rise of thermal residual stress in epoxy resin NPEF-170/unidirectional glass fiber composites. The additional flexible interphase layer can eliminate and transfer thermal residual stress effectively, whose effectiveness mainly depends on the difference between interphase elasticity modulus and fiber elasticity modulus.  相似文献   

10.
《Composite Interfaces》2013,20(2-3):297-317
In this paper an attempt was made to define microstructural properties of carbon fiber/PP composites, with respect to fiber surface chemistry and morphology. In order to define the effects of the fiber surface sizings and morphology on the polymer microstructure, the interphase and mechanical properties of the composites, carbon fibers with similar, but not identical surface chemistry (CH and CT) were used. Characterization was performed by several techniques: SEM, POM, reflection microscopy, DSC, FTIR, XPS, contact angle measurements. For microstructural analysis, the geometrical method, method of intercept and DIF method were used. It was found that both carbon fibers have a strong influence on the nucleation mechanism and crystallization as well as on the microstructural parameters in the model and macro composites. Nucleation efficiency of the fibers has been confirmed by the nucleation parameter Q, measured by Muchova–Lednicky method and by the interfacial energy parameters. Microstructural analysis based on the photographs obtained by POM, SEM and reflection microscopy has shown that in the CH/PP model and macrocomposites the sieve-grain network was formed, which indicates better mechanical properties. The results obtained for the macromechanical properties of PP composites reinforced with CH and CT have confirmed the prediction based on micostructural analysis.  相似文献   

11.
The surface carbon nanotubes (CNTs) were modified to generate functional reactors by using the sonicication method to distribute CNTs evenly among epoxy resin, which was prepared into nano-prepreg with carbon fibers. Additionally, based on various proportions of modified and unmodified CNTs, the mechanical properties and conductivities of the composite, as well as, the characteristics of material subjected to various temperature conditions were investigated. Experimental results indicate that increasing CNT content enhances the mechanical strength and electrical properties. At various temperatures, the mechanical strength drops with increase in temperature because different expansion coefficients differ between fiber and epoxy resin. Finally, the failure surface of nanocomposite was examined using scanning electron microscopy (SEM). Finally we provide a discussion of the failure mechanism of the material.  相似文献   

12.
Biodegradable composites made from bagasse fiber and biodegradable resin were fabricated and the flexural properties of the composites investigated in terms of the effects of fiber length, fiber volume fraction, and different alkali treatments of the bagasse fibers. The flexural properties of the composites increased with the increase in fiber length but decreased below the critical fiber length. The flexural properties increased with the increase in fiber volume fraction. The scanning electron microscope (SEM) micrographs showed that compression of the cellulose structure of bagasse fiber after preparation could have caused enhancement in the flexural properties. Furthermore, when comparing the effects of different alkali treatments of the bagasse fibers, maximum improvement in the flexural properties was observed for the 1% NaOH solution treated fiber composites. After alkali treatment, fibrillation occurred and the surface of the treated fibers became finer; this could contribute to improvement in the fiber‐matrix adhesion and result in enhancing the flexural properties.  相似文献   

13.
Amino groups can be introduced to the surface of carbon fibers (CF) by triethylene-tetramine (TETA) treatment. Carbon fibers coated with triethylene-tetramine (TETA) were treated at 400°C for 30 s in an oxidizing furnace. Differential scanning calorimetry studies showed that the surface functional groups of CF reacted with TETA. The changes of the surface composition and structure of CF were tested by X-ray photoelectron spectrometry (XPS). The interfacial interaction between the resulting CF and an epoxy matrix was also characterized by scanning electron microscopy (SEM) and three-point short-beam shear testing. The XPS results indicate that the number of amino groups on the surface of the CF was significantly increased after being treated with TETA. The interlaminar shear strength (ILSS) of TETA-treated CF-reinforced resin composites (CFRP) was increased by 30% compared with untreated ones, and in the treated CF fracture sections, CFRP pores and carbon fiber pullout were seldom observed. The failure of composites reinforced by treated CF shows a cohesive failure effect in the interface layer.  相似文献   

14.
《Composite Interfaces》2013,20(3):289-308
Experimental and theoretical investigations have been conducted to study the dependence of fiber fragmentation behavior on matrix yielding properties. The cured Epikote 828 resins with two types of curing agents have almost similar elastic moduli, but different tensile yield strengths. The interfacial chemistry between fiber and epoxy resin is unchanged due to the same constituent of the epoxy resin. The experimental results indicate that the fragmentation behavior of the fibers embedded in the matrix is significantly different for the tested glass fiber treated by γ-glycidoxypropyltrimethoxysilane. The average fragment length decreased with increasing tensile yield strength of resin, which suggests that the interfacial shear strength determined in the fragmentation test should be different depending on the tensile yield strength of resin used. The important phenomenon observed is the transition of the micro-damage mode from matrix crack to interfacial debonding. An elastoplastic shear-lag model was used to calculate the shear stress and fiber tensile stress distributions considering different plastic behaviors of the matrices. The theoretical results indicate that the plastic behavior of the matrix has a large influence on stress transfer. Based on elastic and plastic properties of the matrix, the fiber fragmentation behavior in the matrix is predicted. Experimental and theoretical results are favorably compared.  相似文献   

15.
Fluorescence microscopy (FM) has recently been applied to the detection of airborne asbestos fibers that can cause asbestosis, mesothelioma and lung cancer. In our previous studies, we discovered that the E. coli protein DksA specifically binds to the most commonly used type of asbestos, chrysotile. We also demonstrated that fluorescent-labeled DksA enabled far more specific and sensitive detection of airborne asbestos fibers than conventional phase contrast microscopy (PCM). However, the actual diameter of the thinnest asbestos fibers visualized under the FM platform was unclear, as their dimensions were below the resolution of optical microscopy. Here, we used correlative microscopy (scanning electron microscopy [SEM] in combination with FM) to measure the actual diameters of asbestos fibers visualized under the FM platform with fluorescent-labeled DksA as a probe. Our analysis revealed that FM offers sufficient sensitivity to detect chrysotile fibrils as thin as 30–35 nm. We therefore conclude that as an analytical method, FM has the potential to detect all countable asbestos fibers in air samples, thus approaching the sensitivity of SEM. By visualizing thin asbestos fibers at approximately tenfold lower magnifications, FM enables markedly more rapid counting of fibers than SEM. Thus, fluorescence microscopy represents an advanced analytical tool for asbestos detection and monitoring.  相似文献   

16.
In order to investigate the effect of the polyamide benzimidazole group on the surface wettability and interfacial adhesion of fiber/matrix composites, surface features of two kinds of aramid fibers, poly (p-phenylene terephthalamide) fiber (Kevlar-49) and poly-(polyamide benzimidazole-co-p-phenylene terephthalamide) (DAFIII), have been analyzed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis (CAA) system, respectively.The results show that with the incorporation of the polyamide benzimidazole segment, more polar functional groups exist on DAFIII surface. The contact angles of water and diiodomethane on DAFIII surface get smaller. The surface free energy of DAFIII increases to 36.5 mJ/m2, which is 2.3% higher than that of Kevlar-49. In addition, DAFIII has a larger rough surface compared with that of Kevlar-49 due to different spinning processes. The interfacial shear strength (IFSS) of DAFIII/matrix composite is 25.7% higher than that of Kevlar-49/matrix composite, in agreement with the observed results from surface feature tests. SEM micrographs of failed micro-droplet specimens reveal a strong correlation between the fracture features and the observed test data.  相似文献   

17.
《Composite Interfaces》2013,20(2):95-125
Scattering of elastic P-waves from a nanofiber in a matrix is studied analytically throughout this paper. An inhomogeneous interphase region is considered between the nanofiber and the matrix. Dividing the interphase into homogeneous sublayers, surface elasticity effects are studied in the layers adjacent to matrix and nanofiber. Wave function expansion method is used to solve the corresponding equations in all three phases including fiber, interphase, and matrix. Dynamic stress concentration factors around the nanofiber are calculated and utilizing a parametric study, effects of different parameters, such as nanoscale interface, interphase thickness, and interphase rigidity are investigated. The results indicate that considering the effects of surface elasticity in wave scattering problems from inhomogeneous interphases show a major impact on the results. The dimensionless equations presented in this paper provide the possibility of further numerical studies.  相似文献   

18.
Interfacial modification for carbon fiber (CF) reinforced polyarylacetylene (PAA) resin, a kind of non-polar, was investigated. The high carbon phenolic resin was used as coating to treat the surface of CF after oxidation. Atomic force microscopy (AFM) with force modulation mode was used to analyze the interphase of composite. The interlaminar shear strength (ILSS) and mechanical properties of CF/PAA composites were also measured. It was found that the CF/PAA composites treated with oxidation and coating after oxidation had transition area between carbon fiber and PAA resin. The existence of transition area led to the improvement of interfacial performance of composites. Specially, the thickness and stiffness of interphase of composite treated with coating after oxidation were more suitable for CF/PAA composites. Thus, the composite treated with coating after oxidation had the highest value of ILSS and the best mechanical properties.  相似文献   

19.
A comparison of F-12 aramid fiber with domestic armid fiber III (DAF III) on surface feature was carried out by scanning electron microscope (SEM), atomic force microscopy (AFM), elements analysis and X-ray Photoelectron Spectroscopy (XPS) analysis. It is found that the two aramid fibers are of “skin-core” structure and fibrillar structure. The microfibrils orient along the fiber axis and rather poorly bond in transverse direction. Many defects exist on the surface of two fibers. Carbon, hydrogen, nitrogen and oxygen are the major elements of two aramid fiber. The element content of the same aramid fiber from surface to interior is different. The surface carbon contents of F-12 aramid fiber and DAF III are increased by 10.75% and 9.95% than those in fiber interior respectively, the surface nitrogen content decreased by 9.72% and 27.02% respectively, and the surface oxygen content increased by 13.99% and 37.95% respectively.  相似文献   

20.
《Composite Interfaces》2013,20(7):629-635
Flexible epoxy resin was used as an interphase matrix to improve the transverse properties of carbon fiber reinforced plastic (CFRP) laminates. The use of flexible interphase is considered to act as the energy absorber and prevent the fiber/matrix interface cracking. The purposes of the present study are fabrication and characterization of CFRP laminates with flexible interphase. The effect of the flexible interphase on the damage tolerance of CFRP laminates was investigated. It was confirmed that transverse strength was improved and transverse crack progress was suppressed in the laminates with flexible interphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号