首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, dispersion of dedoped polyaniline nanofibers into PEO-LiClO4 blended with P(VdF-HFP) has been discussed. Polyaniline nanofibres have been synthesized by a gentle interfacial polymerization route. The nanofibers are dedoped with base NaOH and films of PEO-P(VdF-HFP)-LiClO4-dedoped polyaniline nanofibres are prepared by solution casting method with varying concentration of dedoped (insulating) nanofibers (from 5 wt. % to 25 wt. %). The synthesized polymer electrolyte films have been characterized by ac impedance analysis, XRD and SEM. The ionic conductivity of PEO-P(VdF-HFP)-LiClO4 electrolyte system increases with increase in concentration of dedoped polyaniline nanofibers. The high aspect ratio (> 50) nanofibres prevent PEO-P(VdF-HFP)-LiClO4 electrolyte matrix from reorganization resulting in increase in amorphicity that leads to enhancement in ionic conductivity. However, the XRD results show that at higher concentration (> 15 wt. %) the nanofibres get phase separated out from the polymer electrolyte phase and start forming insulating clusters which impedes the ion motion. SEM studies confirm the formation of domain like structure of nanofibres at higher concentration, which act as physical barrier for the conduction of Li+ ions.  相似文献   

2.
Preparation of Aligned Polymer Micro/Nanofibres by Electrospinning   总被引:3,自引:0,他引:3       下载免费PDF全文
Polymer micro/nanofibres are prepared by typical and modified methods of electrospinning. The morphologies and microstructures of the electrospun micro/nanofibres are characterized by a scanning electron microscope (SEM). The micro/nanofibres prepared by the typical electrospinning are usually collected in the form of nonwoven mats lacking of structural orientation, However, by modifying collector(s) of the electrospinning setup, the resulting polymer fibres show aligned structures to some extent. We analyse all the forces that the fibres experienced during electrospinning and find that the electrostatic force originating from the splitting electric field plays a key role in the alignment of the micro/nanofibres.  相似文献   

3.
Electrospinning, a technology capable of fabricating ultrafine fibers (microfibers and nanofibers), has been investigated by various research groups for the production of fibrous biopolymer membranes for potential medical applications. In this study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a natural, biocompatible, and biodegradable polymer, was successfully electrospun to form nonwoven fibrous mats. The effects of different electrospinning parameters (solution feeding rate, applied voltage, working distance and needle size) and polymer solution properties (concentration, viscosity and conductivity) on fiber diameter and morphology were systematically studied and causes for these effects are discussed. The formation of beaded fibers was investigated and the mechanism presented. It was shown that by varying electrospinning parameters within the processing window that was determined in this study, the diameter of electrospun PHBV fibers could be adjusted from a few hundred nanometers to a few microns, which are in the desirable range for constructing “biomimicking” fibrous scaffolds for tissue engineering applications.  相似文献   

4.
Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of errors. The mean relative error for the RSM and ANN models were 1.97% and 2.62% and the root mean square errors (RMSE) were 1.50 and 1.95, respectively. The superiority of the RSM-based approach is due to its high prediction accuracy and the ability to compute the combined effects of the electrospinning factors on the porosity of the nanofiber mats.  相似文献   

5.
With the aid of atomistic multiscale modelling and analytical approaches, buckling strength has been determined for carbon nanofibres/epoxy composite systems. Various nanofibres configurations considered are single walled carbon nano tube (SWCNT) and single layer graphene sheet (SLGS) and SLGS/SWCNT hybrid systems. Computationally, both eigen-value and non-linear large deformation-based methods have been employed to calculate the buckling strength. The non-linear computational model generated here takes into account of complex features such as debonding between polymer and filler (delamination under compression), nonlinearity in the polymer, strain-based damage criteria for the matrix, contact between fillers and interlocking of distorted filler surfaces with polymer. The effect of bridging nanofibres with an interlinking compound on the buckling strength of nano-composites has also been presented here. Computed enhancement in buckling strength of the polymer system due to nano reinforcement is found to be in the range of experimental and molecular dynamics based results available in open literature. The findings of this work indicate that carbon based nanofillers enhance the buckling strength of host polymers through various local failure mechanisms.  相似文献   

6.
徐真  李慧  陈立东 《中国物理 B》2022,31(2):28203-028203
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.  相似文献   

7.
The hydrophobic cationic hydroxyethyl cellulose (HEC-g-DA) was prepared by grafting HEC with various alkyl ammonium chlorides (DA) in order to improve the thickening properties of cationic hydroxyethyl cellulose. The solution behavior of HEC-g-DA was studied, and showed that the apparent viscosity of HEC-g-DA increased with polymer concentration, and there existed a critical association concentration (Cp*). The alkyl chain length of DA had a great influence on Cp*, which decreased with increasing alkyl chain length; however, too long an alkyl chain of DA reduced the water solubility of the polymer, resulting in a slight increase of Cp*. The effect of temperature and electrolyte concentration on the thickening properties of HEC-g-DA was investigated; the value of viscous flow activation energy (Ea) was minimum for the sample of HEC-g-DA16 (glycidyl-N-hexadecyl–N,N-dimethyl-ammonium chloride), indicating the weakest sensitivity of the viscosity to temperature. In the whole range of shear rate investigated, the solutions of HEC-g-DA displayed the shear thinning behavior of a pseudoplastic fluid. The values of viscous index (n) from the Ostwald model simulation decreased with polymer concentration, indicating an improvement of the shear thinning property of the solution, whereas the increase of the consistency coefficient (k) indicated the enhancement of the thickening behavior of the polymer. With increasing polymer concentration, the molecular association of HEC-g-DA16 became strong, and high-shear stress was required to remove the association, while the difference between G′ and G″ became small, indicating that the elasticity of the system was enhanced at high polymer concentration. The amphiphilic structure of the HEC-g-DA16 molecules contributed to the low surface tension of the polymer.  相似文献   

8.
It is well established that prolonged exposure of solutions of macromolecules to high-energy ultrasonic waves produces a permanent reduction in viscosity. It is generally agreed as well and also this study proved the hydrodynamic forces to have the primary importance in degradation. According to this study the sonolytic degradation of aqueous carboxymethylcellulose polymer or polymer mixtures is mainly depended on the initial dynamic viscosity of the polymer solution when the dynamic viscosity values are in the area range enabling intense cavitation. The higher was the initial dynamic viscosity the faster was the degradation. When the initial dynamic viscosities of the polymer solutions were similar the sonolytic degradation was dependent on the molecular mass and on the concentration of the polymer. The polymers with high molecular mass or high polymer concentration degraded faster than the polymers having low molecular mass or low polymer concentration. The initial dynamic viscosities were adjusted using polyethyleneglycol.  相似文献   

9.
贾琳  王理林  申洁楠  张忠明  李俊杰  王锦程  王志军 《物理学报》2017,66(19):196402-196402
为了深入探究定向多孔聚合物材料的微观组织形成机理,利用定向凝固原位实时观察手段,研究不同浓度及不同分子量聚乙烯醇(PVA)水溶液在不同抽拉速度下的定向凝固形貌演化.PVA水溶液的定向凝固形态在低浓度(1 wt%,2.5 wt%)和小分子量(M_w=24000)情况下,一次枝晶间距随着抽拉速度的增加而减小.随着PVA浓度和分子量的增加,一次枝晶间距随抽拉速度变化不明显,枝晶主轴尺寸则随速度增加呈现减小的趋势.与传统凝固形态形成机理相比,PVA水溶液的凝固形态由PVA分子的扩散引起的凝固界面不稳定性机理和PVA高分子链交联引起的局部相分离机理竞争决定.  相似文献   

10.
The interaction between two parallel plates due to non-adsorbing polymer chains with excluded volume is calculated using the adsorption method. The adsorption is calculated from the profile of the polymer segment concentration between the plates, which is obtained from the product function of the concentration profile near a single wall, involving the correlation length. The renormalization group theory provides expressions for the osmotic pressure and consequently for the osmotic compressibility, chemical potential and correlation length of a polymer solution. Both the local polymer concentration profiles as well as the minimum of the interaction potential between the plates agree with recently published self-avoiding random walk computer simulations. Received 9 August 2001  相似文献   

11.
Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alq3 to PMMA is investigated. UVvisible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule.  相似文献   

12.
The specific features of the transformation of a polymer solution into a solid state (film) of an amorphous polymer are investigated using electron microscopy. The correspondence between the characteristics of fractal macromolecular aggregates in a solution and the parameters of the spatial distribution of density fluctuations at the surface of the film is established using a linear atactic poly(styrene) as an example. The correspondence exists under the condition that the packing density of coils does not exceed a critical value at the liquid-solid phase transition point and the polymer concentration in the solution provides the formation of a continuous network of entangled macromolecules.  相似文献   

13.
Use of ultrasound can yield polymer degradation as reflected by a significant reduction in the intrinsic viscosity or the molecular weight. The ultrasonic degradation of two water soluble polymers viz. carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) has been studied in the present work. The effect of different operating parameters such as time of irradiation, immersion depth of horn and solution concentration has been investigated initially using laboratory scale operation followed by intensification studies using different additives such as air, sodium chloride and surfactant. Effect of scale of operation has been investigated with experiments in the available different capacity reactors with an objective of recommending a suitable type of configuration for large scale operation. The experimental results show that the viscosity of polymer solution decreased with an increase in the ultrasonic irradiation time and approached a limiting value. Use of additives such as air, sodium chloride and surfactant helps in increasing the extent of viscosity reduction. At higher frequency operation the viscosity reduction has been found to be negligible possibly attributed to less contribution of the physical effects. The viscosity reduction in the case of ultrasonic horn has been observed to be more as compared to other large capacity reactors. Kinetic analysis of the polymer degradation process has also been performed. The present work has enabled us to understand the role of the different operating parameters in deciding the extent of viscosity reduction in polymer systems and also the controlling effects of low frequency high power ultrasound with experiments on different scales of operation.  相似文献   

14.
In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.  相似文献   

15.
A mechanism of extraction of tubular membranes from a lipid vesicle is presented. A concentration gradient of anchoring amphiphilic polymers generates tubes from budlike vesicle protrusions. We explain this mechanism in the framework of the Canham-Helfrich model. The energy profile is analytically calculated and a tube with a fixed length, corresponding to an energy minimum, is obtained in a certain regime of parameters. Further, using a phase-field model, we corroborate these results numerically. We obtain the growth of tubes when a polymer source is added, and the budlike shape after removal of the polymer source, in accordance with recent experimental results.  相似文献   

16.
Template-assisted nanofabrication is a simple and effective method to produce various nanostructure morphologies by controlling the polymer, solvent, and template characteristics. In this study, the importance of the surface interactions between the solution and the template in controlling the morphology of the nanostructures has been highlighted. Contact angles between various polymer solutions and anodized aluminum oxide (AAO) templates have been determined. The morphology of the resultant nanostructures has been correlated with the measured contact angles between solution and template. It is generally observed that nanorods (diameter of 100–350 nm) are produced at low contact angles, whereas nanotubes (diameter of 200–400 nm) tend to form at high contact angles. Therefore, desired nanostructure morphology for a given application can be obtained by controlling the initial wetting interaction between solution and template.  相似文献   

17.
Electrospinning of polyacrylonitrile/poly(vinylidene fluoride) (PAN/PVdF) was applied using Box–Benkhen experimental design to obtain a quantitative relationship between selected electrospinning parameters (namely applied voltage, solution concentration, and PVdF composition) and nanofiber diameter and standard deviation of nanofiber diameter. Important parameters in the model were determined by analysis of variance (ANOVA). The model was consequently used to find the optimal conditions that yield the minimum PAN/PVdF nanofiber diameter. The morphology and nanofiber diameter were investigated by field emission scanning electron microscopy (FESM). The range of produced nanofiber diameters was from 116 to 379 nm. It was concluded that the nanofiber diameter tended to increase with solution concentration and decrease with PVdF composition. The applied voltage had no significant effect on the nanofiber diameters. Nanofibers with smaller standard deviation in diameter could be obtained at lower solution concentrations and higher PVdF composition. The model predicted the minimum nanofiber diameter of 114 nm when the applied voltage was set at 19.7 kV, solution concentration set at 14.07 wt%, and the PVdF composition set at 58.78 wt%.  相似文献   

18.
It has been found that the formation of an intermolecular charge transfer complex in the ground electronic state between the model conjugated polymer (poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and the low-molecular-weight organic acceptor (2,4,7-trinitrofluorenone, TNF) occurs stepwise with an increase in the acceptor concentration in the blend as is observed in the optical absorption spectra of solutions. The threshold dependence of the absorption of the charge transfer complex is attributed to the stepwise change in the concentration of the charge transfer complexes, which is not explained by the standard model describing the optical characteristics of intermolecular charge transfer complexes. A kinematic model has been proposed to explain the threshold increase in the concentration of charge transfer complexes: at low acceptor concentrations, the charge transfer complex is formed primarily on the surface of a polymer coil, whereas as the acceptor fraction in the solution increases, TNF molecules penetrate inside the polymer coils, forming the charge transfer complex with the units of the polymer inside the coil.  相似文献   

19.
Ultrasonic depolymerization of aqueous polyvinyl alcohol.   总被引:7,自引:0,他引:7  
Ultrasonication has proved to be a highly advantageous method for depolymerizing macromolecules because it reduces their molecular weight simply by splitting the most susceptible chemical bond without causing any changes in the chemical nature of the polymer. Most of the effects involved in controlling molecular weight can be attributed to the large shear gradients and shock waves generated around collapsing cavitation bubbles. In general, for any polymer degradation process to become acceptable to industry, it is necessary to be able to specify the sonication conditions which lead to a particular relative molar mass distribution. This necessitates the identification of the appropriate irradiation power, temperature, concentration and irradiation time. According to the results of this study the reactors constructed worked well in depolymerization and it was possible to degrade aqueous polyvinyl alcohol (PVA) polymer with ultrasound. The most extensive degradation took place at the lowest frequency used in this study, i.e. 23 kHz, when the input power was above the cavitation threshold and at the lowest test concentration of PVA, i.e. 1% (w/w). Thus this study confirms the general assumption that the shear forces generated by the rapid motion of the solvent following cavitational collapse are responsible for the breakage of the chemical bonds within the polymer. The effect of polymer concentration can be interpreted in terms of the increase in viscosity with concentration, causing the molecules to become less mobile in solution and the velocity gradients around the collapsing bubbles to therefore become smaller.  相似文献   

20.
Poly (butylene terephthalate) (PBT) nanofiber mats were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PBT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号