首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

2.
For spectroscopic and remote sensing applications injection seeded optical parametric oscillators (OPOs) are well established. In this paper we study the dependencies of signal resonant injection seeding of an OPO on its resonator length, phase matching angle and pump power in detail. The quality of the seeding process is assessed by stabilising the seed laser on a molecular absorption line of water vapour and using a water vapour absorption cell as a narrow bandwidth filter for the injection seeded radiation. A reduction of the acceptance of injection seeding is observed with increasing pump power. For small phase mismatch injection seeding with a spectral purity of 99.7% was observed at 13-fold OPO threshold. A signal pulse energy of 38 mJ with 50% pump depletion was achieved with a beam parameter M2 of about 6. PACS 42.65.Yj; 42.79.Nv; 42.79.Qx  相似文献   

3.
We present in this paper a highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-end-pumped Nd:YVO4/Cr:YAG passively Q-switched laser. At the incident diode pump power of 4 W, the signal (1.57 μm) and idler (3.29 μm) average output powers up to 580 and 100 mW, respectively, have been achieved. The corresponding conversion efficiency from the input diode pump power to the output signal power is 14.5%, while that to the total OPO output (signal+idler) reaches 17%. To the best of our knowledge, these are the highest conversion efficiencies reported to date. After more than four hours of investigation, the OPO power stability better than 2% has been obtained. In addition, efficient cavity dumping of the IOPO has inevitably led to the short pulse duration (1.6 ns) and high peak power output (8.3 kW) at the signal wave. Additionally, the amplitude and repetition rate fluctuations of the signal pulses are well within 5%. PACS 42.55.Xi; 42.60.Gd; 42.60.Lh; 42.65.Yj  相似文献   

4.
We report the phase matching of parametric frequency conversion in the nonlinear material BiB3O6 (BiBO) and on an investigation of optical parametric oscillators (OPOs) of this new crystal. Based on the calculation of collinear type I and type II phase matching within the refractive-index planes, the most favorable directions for phase matching are identified for OPOs pumped by the fundamental or the harmonics of 1064-nm Nd-doped lasers. Based on these results, pulsed 532-nm-pumped ns OPOs are realized. The pump source is either a Q-switched high repetition rate (10 kHz) Nd:YVO4 laser (with a pulse energy of 24 J) or a low repetition rate (10 Hz), high pulse energy (120 mJ) Nd:YAG laser system. The BiBO OPO pumped by the Nd:YVO4 laser showed a very low threshold of 0.047 J/cm2. At an average pump power of 2.4 W the total OPO output power was 630 mW. By changing the phase-matching angle within the yz plane from 0 to 11.6° the signal wavelength was tuned from 735 nm to 970 nm, while the spectral width changed from 0.2 nm to 1.4 nm. By pumping the OPO with the Nd:YAG laser, the OPO had a threshold of 0.12 J/cm2, a steep slope (59%) and a high total efficiency (of up to 48%). Due to divergence broadening the spectral width changes from 8.5 nm at 800 nm to 70 nm near degeneracy. The properties of BiBO determined from the experimental results are compared with those of well-known nonlinear materials such as BBO, LBO and KTP. PACS 42.65.-k; 42.65.Yj; 42.70.-a; 42.70.Mp  相似文献   

5.
在半导体泵浦被动调QNd∶GdVO4/Cr4+∶YAG激光腔内,利用KTP晶体实现了高重复频率的内腔OPO的稳定运转。OPO其信号光转换效率为7%,斜效率为10.3%。当泵浦功率7.3W时,可获得平均功率为0.48W,重频15kHz,脉宽6ns,峰值功率达13KW的1570nm激光输出。  相似文献   

6.
This paper reports on the experimental investigation and the numerical simulation of the spatio-temporal dynamics of the pulse formation in nanosecond optical parametric oscillators. The temporal evolution of the spatial intensity distribution is measured with a fast two-dimensional CCD-camera. The measurements are performed for a signal-resonant nanosecond pulsed optical-parametric-oscillator (OPO) which consists of a 12 mm long, critically phase-matched beta-barium-borate (BBO)-crystal in a 40 mm long cavity of two plane mirrors. The OPO was pumped by the third harmonic of a flashlamp-pumped Nd:YAG-Laser at a repetition rate of 10 Hz. At pump energies close to the OPO threshold the emitted OPO-radiation has an almost gaussian intensity distribution throughout the entire pulse. The beam quality factor M2 remains below 2.2. At high pump energies the OPO oscillation also starts with an almost gaussian beam-profile. During the build-up and parametric amplification of the pulse the fields experience, however, a spatially inhomogeneous gain, caused by walk-off in the birefringent crystal, pump-depletion, and back-conversion. The spatial intensity distribution thus becomes asymmetric and the M2 value increases. The measurements are compared with the results of detailed numerical calculations. The model takes the amplification of the OPO-radiation in the nonlinear crystal, and the properties of the OPO cavity as well as the diffraction of the beams during propagation into account. The spatio-temporal dynamics of the pulse formation predicted by the numerical model are in good agreement with the experimental results. PACS 42.65.Sf; 42.65.Yj  相似文献   

7.
We report on optical parametric oscillators (OPO's) based on periodically poled RbTiOAsO(4) (PP RTA), which are pumped by Q -switched solid-state lasers. With a diode-pumped Nd:YVO(4) laser (pulse energy, 800microJ ; pulse duration, 5.5 ns; repetition rate, 1 kHz) the PP RTA OPO generated 1.58-microm signal and 3.26-microm idler radiation with a signal pulse energy of 45microJ . The large aperture of 3 mmx3 mm of the PP RTA crystal also permitted OPO operation with pump pulse energies as high as 65 mJ, provided by a flash-lamp-pumped Q -switched Nd:YAG laser (pulse duration, 20 ns; repetition rate, 10 Hz). With this pump source the OPO generated signal pulse energies as high as 17 mJ, corresponding to an efficiency of 26%. The performance of this OPO shows that large-aperture PP RTA crystals are well suited for pulsed nanosecond OPO operation with pump pulse energies of tens of millijoules.  相似文献   

8.
A high-repetition-rate eye-safe optical parametric oscillator(OPO),using a non-critically phase-matched KTP crystal intracavity pumped by a passively Q-switched Nd:GdVO4/Cr4 :YAG laser,is experimentally demonstrated.The conversion efficiency for the average power is 7% from pump diode input to OPO signal output and the slope efficiency is up to 10.3%.With an incident pump power of 7.3 W.the compact intracavity OPO(IOPO)cavity,operating at 15 kHz,produces an average power of 0.57 W at 1570 nm with a pulse width as short as 6 ns.The peak power at 1570 nm is higher than 6.3 kW.  相似文献   

9.
We measured 90% pump depletion in a singly resonant image-rotating nanosecond optical parametric oscillator that was pulse-injection seeded by a self-generated signal pulse. The oscillator was pumped by an 8 ns duration single-frequency 532 nm pulse from an injection-seeded Q-switched Nd:YAG laser and resonated an 803 nm signal. The pump and pulsed-seed beams had flat-topped spatial fluence profiles with diameters of approximately 6 mm, giving a cavity Fresnel number at 803 nm approaching 400. The beam cleanup effects of the image-rotating cavity produce a far-field signal spatial fluence profile with approximately 60% of its energy falling within the diffraction-limited spot size.  相似文献   

10.
Nearly transform limited femtosecond pulses tunable between 2.56 and 3.16 m have been generated by optical parametric amplification. The single stage parametric amplifier is pumped by a tunable high power femtosecond Ti:sapphire laser system at 1 kHz repetition rate and seeded by quasi-continuous wave (cw) radiation from the Q-switched Nd:YLF laser used to pump the regenerative amplifier. The 100 fs idler pulses are shorter than the pump pulses. The mechanism of the achieved pulse compression is discussed and experimental results are compared with numerical simulations.  相似文献   

11.
A single longitudinal mode (SLM) short pulse high energy all-solid-state ultraviolet laser is demonstrated in this paper. Through the use of a master oscillator power amplifier (MOPA) architecture, we have been able to provide high-energy outputs with the combination of short pulses, good beam quality and SLM typically produced by a 1064 nm Nd:YAG laser. The passively Q-switched SLM Nd:YAG laser in a twisted-mode cavity is operated as the seed source. After the seed is amplified by a double-pass pre-amplifier and a single-pass main-amplifier, the 100 μJ, 1064 nm, ∼1 ns seeding pulse was amplified up to 400 mJ energy in the total pulse train. Using a KTP crystal for second-harmonic generation and a CLBO for fourth-harmonic generation, we successfully obtained a short pulse, high energy ultraviolet laser of 266 nm, with the output energy of 108 mJ, pulse width 1 ns and M2<5. PACS 42.65.Ky; 42.72.Bj; 42.60.Da  相似文献   

12.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

13.
姚杰  王勇刚  李永放 《应用光学》2018,39(2):279-283
利用WS2的可饱和吸收特性,在激光二极管侧面抽运Nd:YAG固体激光器Z型腔结构中分别实现了被动调Q和被动调Q锁模运转。实验表明:当泵浦电流为9.5 A时,开始启动调Q运转,当泵浦电流大于9.8 A时,调Q激光脉冲趋于稳定。当泵浦电流为12.8 A时,被动调Q输出的最大平均功率为466 mW,最窄脉冲宽度为3.205 μs,对应的重复频率为71.70 kHz,此时最大单脉冲能量为6.5 μJ。当泵浦电流达到13.4 A时,激光器实现调Q锁模运转。调Q锁模的最高输出功率为590 mW,调Q包络频率为71.98 kHz,单个调Q包络内的脉冲串重复频率123.1 MHz,每个调Q包络中包含369个脉冲,单脉冲能量为22.2 nJ。结果表明WS2材料可以作为可饱和吸收体用于固体激光器中。  相似文献   

14.
We have characterized non-critical phase-matching (NCPM) for both Type I and Type II second harmonic generation (SHG) in y-cut GdxY1-xCOB using a nanosecond optical parametric oscillator (OPO). The variation of the NCPM wavelength with temperature was investigated for different values of the compositional parameter x. Efficient SHG of 1064 nm was achieved by choosing the suitable compositional parameter x=0.28 and by tuning the temperature of the crystal to 52 °C. Using a 25-mm-long Gd0.28Y0.72COB crystal, conversion efficiencies of 41 and 43% were obtained respectively from a mode-locked Nd:YAG and a Q-switched Nd:YAG laser. PACS 42.25.Lc; 42.65.Ky; 42.70.Mp; 42.79.Nv  相似文献   

15.
We demonstrate MW-level, single resonance optical parametric oscillator, based on KTP Type-II crystal with noncritical phase-matching. The OPO is pumped by electro-optically Q-switched Nd:YAG slab laser providing 55?mJ of pulse energy. At the output, we achieved 28?mJ of signal pulse energy at 1.57?μm with 51% conversion efficiency, corresponding to 1.4?MW of peak power.  相似文献   

16.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

17.
We demonstrate an efficient and eye-safe wavelength intracavity optical parametric oscillator (OPO),based on a KTP crystal inside a Q-switched Nd:YVO4 laser end pumped by a fiber-coupled diode laser. Inthe acousto-optic Q-switched operation with the pulse repetition rate of 10 kHz, a 1572-nm eye-safe laser with the average power of 237 mW at the incident pump power of 5.64 W is obtained. Under the pulse repetition rate of 5 kHz, the signal light with pulse width of 2 ns and peak power of 18.5 kW is achieved.The conversion efficiency of the average power is 4.2% from pump diode to OPO signal output and thesignal pulse duration is about 13 times shorter than that of the depleted pump light.  相似文献   

18.
We present a flashlamp-pumped Nd:YAG laser simultaneously emitting pulse structures on microsecond, nanosecond and picosecond time scales. Within a microsecond flashlamp pump pulse a nonlinear reflector based on stimulated Brillouin scattering (SBS) generates several Q-switch pulses. The phase-conjugating effect of the SBS reflector provides a compensation of phase distortions generated inside the laser rod, resulting in transverse fundamental mode operation. Additional acousto-optic loss modulation inside the resonator leads to mode locking. As a result, each Q-switch pulse is subdivided into several picosecond pulses. Energies of up to 2 mJ for the mode-locked pulses with durations between 220 and 800 ps are demonstrated. The wide variability of the lasers temporal output parameters as well as its high beam quality make it a splendid tool for fundamental research in laser materials processing. PACS 42.60.Fc; 42.60.Gd; 42.65.Es  相似文献   

19.
Subpicosecond pulses at a fixed wavelength produced with a low-Q cavity dye laser pumped by a single, nanosecond laser (Q-switched Nd:YAG) are converted into tunable high-power sub-100 femtosecond pulses by generation, spectral selection, amplification and compression of a supercontinuum. The tunable, chirped, high-energy pulses obtained are compressed with a prism pair. Energies up to 50 J in sub-100 fs pulses were obtained in the 540 to 650 nm range using 40 mJ of the Nd: YAG-laser pumping pulses at 532 nm. The whole sub-100 fs system including the low-Q dye laser uses only one Nd:YAG laser as a pump source.  相似文献   

20.
The use of periodically poled KTiOPO(4) as a gain medium in efficient nanosecond optical parametric oscillators pumped by a flash-lamp-pumped Q-switched Nd:YAG laser is demonstrated. Parametric radiation in the 1.8-2.5-mu m spectral region was achieved when the crystal temperature was tuned from 10 to 100 degrees C. A maximum total output energy of 1.8 mJ was obtained at a pump level of 3.5 mJ. Stable operation was achieved, with conversion efficiencies reaching 50%. No gray tracking or laser damage was observed, even for pump intensities of 450MW/cm(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号