首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a scheme for remotely preparing a general two-particle entangled state via two tripartite W entangled states of different amplitudes. In this scheme one sender and two remote receivers are involved. The sender can help either one of the receivers to remotely reconstruct the original state with the aid of the other receiver’s two single-particle orthogonal measurements. It is shown that by means of the method of the positive operator-valued measurement, our remote state preparation scheme can be achieved probabilistically. This project supported by the National Key Basic Research and Development Program of China under Grant No. 2006CB921604 and the National Natural Science Foundation of China under Grant Nos. 60578050 and 10434060.  相似文献   

2.
We present two schemes for preparing remotely a three-particle entangled state by two different quantum channels. In the first scheme, two partial three-particle entangled states are used as the quantum channels, while in the second scheme, three two-particle non-maximally entangled states are employed as the quantum channels. It is shown that the remote state preparation can be successfully realized with certain probability, for both two schemes, if a sender performs some projective measurements and a receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.  相似文献   

3.
We present two schemes for preparing remotely a three-particle entangled state by two different quantum channels. In the first scheme, two partial three-particle entangled states are used as the quantum channels, while in the second scheme, three two-particle non-maximally entangled states are employed as the quantum channels. It is shown that the remote state preparation can be successfully realized with certain probability, for both two schemes, if a sender performs some projective measurements and a receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.  相似文献   

4.
We propose a scheme for multiparty-controlled remote preparation of the two-particle state by using two non-maximally Greenberger-Horne-Zeilinger states as quantum channel. Our scheme consists of one sender and n remote receivers. It will be shown that the sender can help either one of the n receivers to remotely preparation the original state with the appropriate probability, and the sender Alice's two-particle projective measurement and the controllers' single-particle product measurements are needed. We also obtained the probability of the successful remote state preparation.  相似文献   

5.
A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender’s side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver’s side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.  相似文献   

6.
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.  相似文献   

7.
肖骁琦  杨联华 《光学学报》2008,29(9):1812-1815
提出了两个利用三原子W类纠缠态作为量子通道.在腔量子电动力学(QED)体系中实现单原子态的远程制备方案:一个是接收者借助于原子与单模腔场之间的大失谐相互作用实现初始态重建,另一个则是接受者利用原子与单模腔场之间的共振相互作用完成远程态制备.两方案中都涉及到了一位发送者和两位接收者,发送者可以将被传送态远程制备到两位接收者中的任何一位的手中,而另一位接受者必须为其提供必要的协助.表明利用原子与腔场之间的大失谐相互作用的方法可以很好地克服腔场的消相干,降低对腔品质因子的要求;而利用共振相互作用的方法则无需引入辅助原子,操作简便.但不论采用何种方法,实现单原子远程态制备的总成功概率是相同的.  相似文献   

8.
We propose a scheme for remotely preparing a four-qubit cluster-type state with complex coefficients by using six EPR pairs as the quantum channel. To complete the remote state preparation scheme, a novel set of four-qubit mutually orthogonal basis vectors has been introduced. It is shown that, after the sender performs two different four-qubit projective measurements, the receiver can reconstruct the original state (to be prepared remotely) with unit successful probability. Moreover, the scheme is also generalized to the case that non-maximally two-qubit entangled states are taken as the quantum channel.  相似文献   

9.
We present a novel scheme for asymmetric controlled bidirectional remote state preparation (ACBRSP) with complex coefficients via a ten-qubit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to remotely prepare a single-qubit state at Bob’s site, at the same time, Bob wishes to help Alice remotely prepares an arbitrary two-qubit entangled state. It is shown that, only if the two senders and the controller collaborate with each other, the ACBRSP can be completed successfully. We demonstrate that the total success probability of the ACBRSP in this scheme can reach 1, that is, the scheme is deterministic.  相似文献   

10.
A scheme for probabilistic remotely preparing N-particle d-dimensional equatorial entangled states via entangled swapping with three parties is presented. The quantum channel is composed of N - 1 pairs of bipartite d-dimensional non-maximally entangled states and a tripartite d-dimension non-maximally entangled state. It is shown that the sender can help either of the two receivers to remotely prepare the original state, and the N-particle projective measurement and the generalized Hadamard transformation are needed in this scheme. The total success probability and classical communication cost are calculated.  相似文献   

11.
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation (RSP) can be successfully realized via the positive operator valued measure (POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.  相似文献   

12.
We present a scheme for teleporting an unknown arbitrary two-particle state from a sender to either one of two receivers. The quantum channel is composed of two partial entangled three-particle GHZ states. An unknown arbitrary two-particle state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and each receiver introduces an appropriate unitary transformation with the help of the other receiver's Hadamard operations and simple measurements.  相似文献   

13.
远程制备三粒子纠缠态   总被引:1,自引:0,他引:1  
在这篇文章中,主要介绍了用三对最大的和非最大两粒子纠缠态作为量子通道远程制备一个三粒子纠缠态的方案。具体方法与量子隐形传态不同的一点就是:我们事先假定Alice已经知道待被制备的态,而Bob并不知道。然后再通过一系列操作得到我们想要制备的态。最后我们得到一个结论:用远程态制备比量子隐形传态更加节省了经典资源。  相似文献   

14.
I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers. The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state. I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure, respectively. The corresponding success probabilities of the scheme with different methods as well as the total classical communicationcost required in this scheme are also calculated.  相似文献   

15.
《中国物理 B》2021,30(9):90302-090302
Due to the unavoidable interaction between the quantum channel and its ambient environment, it is difficult to generate and maintain the maximally entanglement. Thus, the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application. Here, we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously. The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability. In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels, we put forward the second scheme, which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers. In particular, its success probability can reach 100% in principle, and independent of the entanglement degree of the shared non-maximally entangled channel. Notably, in the second scheme, the auxiliary particle is not required.  相似文献   

16.
We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle states. The first sender transforms the quantum channel shared by all the agents via POVM according to her knowledge of prepared state. All the senders perform singIe- or two-particle projective measurements on their entangled particles and the receiver can probabilisticaly reconstruct the original state on her entangled particles via unitary transformation and auxiliary qubit. The scheme is optimal as the probability which the receiver prepares the original state equals to the entanglement of the quantum channel. Moreover, it is more convenience in application than others as it requires only two-particle entanglements for preparing an arbitrary two-qudit state.  相似文献   

17.
多粒子纠缠W态的多控制隐形传输和保真度的研究   总被引:3,自引:1,他引:2  
讨论了三粒子纠缠W态的三人控制的隐形传输和控制方中有一个人、两个人和三个人不合作时接收方获得发送方的量子态的保真度,接着研究了多粒子纠缠W态的多控制隐形传输的方案,并且讨论了当有X个控制方不合作时接收方获得发送方的量子态的保真度.  相似文献   

18.
We present two schemes for realizing the remote preparation of a Greenberger--Horne--Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.  相似文献   

19.
陶原  潘炜  罗斌 《物理学报》2008,57(4):2016-2020
设计了一组新的量子远程态制备步骤,在发送方对手中的粒子完成测量后,接收方采用该步骤可以有效降低远程态制备的经典通信消耗-给出一种利用部分纠缠的三粒子Greenberger-Horne-Zeilinger(GHZ)态和部分纠缠的二粒子态作信道,远程制备一个三粒子GHZ态的方案,以此方案为例具体说明上述方法的运用步骤并给出了该方法的适用范围-结果表明,运用该方法后只需消耗1bit经典信息即可远程制备一个三粒子GHZ态- 关键词: 远程态制备 经典通信消耗 三粒子Greenberger-Horne-Zeilinger态 量子信道  相似文献   

20.
提出使用纠缠交换的方法,采用N对二粒子非最大纠缠态作为量子通道来传输N粒子W纠缠态的方案。传输过程中,发送者对自己所拥有的粒子进行Bell基测量,并将测量结果通过经典通道通知接收者,接收者根据所获取的信息对她的粒子实行相应的幺正变换以恢复最初待传输的粒子态,从而,成功实现该隐形传输。文章还以三粒子的传输为例作了详细介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号