首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Platinum nanoparticles were synthesized by the methanol reduction method, and their size was controlled to 3 nm on average using PVP [poly(N-vinyl-2-pyrrolidon)] as a protecting unit. Various contents of Pt nanoparticles were incorporated into ZnO solutions which were synthesized by a sol-gel process. ZnO films with Pt nanoparticles of various content were annealed at 500 °C and 600 °C for 1 h. The crystallinity increased with the annealing temperature and also slightly with the content of Pt nanoparticles. The sheet resistance of ZnO films decreased with the incorporation of Pt nanoparticles, however the decreasing behavior was not maintained with increasing content of Pt nanoparticles. A shift of valence band maximum energy of ZnO film with Pt nanoparticles to higher energy was also observed due to electron transfer from Pt nanoparticles to ZnO film. The optical transmittance was 88 ± 2% in the visible region for all the ZnO films. Well-defined 60 μm wide direct-patterned ZnO films containing Pt nanoparticles of 0.5 atomic percent could be formed without using dry etching process.  相似文献   

2.
The 200 nm-thickness Ni film was imposed as the diffusion barrier layer between the Au film and the alloy substrate to improve the low-emissivity durability of the Au film at high temperature. The results show that the Au/Ni multilayer films still kept low emissivity after working at 600 °C for 200 h. It was concluded that the Ni interlayer effectively retarded the diffusion between gold film and the metal alloy below 600 °C.  相似文献   

3.
Influence of both substrate temperature, Ts, and annealing temperature, Ta, on the structural, electrical and microstructural properties of sputtered deposited Pt thin films have been investigated. X-ray diffraction results show that as deposited Pt films (Ts = 300, 400 °C) are preferentially oriented along (1 1 1) direction. A little growth both along (2 0 0) and (3 1 1) directions are also noticed in the as deposited Pt films. After annealing in air (Ta = 500-700 °C), films become strongly oriented along (1 1 1) plane. With annealing temperature, average crystallite size, D, of the Pt films increases and micro-strain, e, and lattice constant, a0, decreases. Residual strain observed in the as deposited Pt films is found to be compressive in nature while that in the annealed films is tensile. This change in the strain from compressive to tensile upon annealing is explained in the light of mismatch between the thermal expansion coefficients of the film material and substrate. Room temperature resistivity of Pt films is dependant on both the Ts and Ta of the films. Observed decrease in the film resistivity with Ta is discussed in terms of annihilation of film defects and grain-boundary. Scanning electron microscopic study reveals that as the annealing temperature increases film densification improves. But at an annealing temperature of ∼600 °C, pinholes appear on the film surface and the size of pinhole increases with further increase in the annealing temperature. From X-ray photoelectron spectroscopic analysis, existence of a thin layer of chemisorbed atomic oxygen is detected on the surfaces of the as deposited Pt films. Upon annealing, coverage of this surface oxygen increases.  相似文献   

4.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

5.
Thermal stability of Ag films in air prepared by thermal evaporation   总被引:1,自引:0,他引:1  
The thermal stability of silver films in air has been studied. Pure Ag films, 250 nm in thickness, were prepared on glass substrates by thermal evaporation process, and subsequently annealed in air for 1 h at temperatures between 200 and 400 °C. The structure and morphology of the samples were investigated by X-ray diffraction, Raman spectra and atomic force microscopy. It is found that the crystallization enhances for the annealed films, and film surface becomes oxidized when annealing temperature is higher than 350 °C. The electrical and optical properties of the films were studied by van der Pauw method and spectrophotometer, respectively. Reflectance drops sharply as Ag films are annealed at temperatures above 250 °C. Film annealed at 250 °C has the maximum surface roughness and the minimum reflectance at 600 nm optical wavelength. Film annealed at 200 °C has the minimum resistivity, and resistivity increases with the increasing of the annealing temperature when temperature is above 200 °C. The results show that both oxidization on film surface and agglomeration of silver film result in infinite of electrical resistivity as the annealing temperature is above 350 °C.  相似文献   

6.
Zinc oxide (ZnO) thin films were deposited on unheated silicon substrates via radio frequency (RF) magnetron sputtering, and the post-deposition annealing of the ZnO thin films was performed at 400 °C, 600 °C, 800 °C, and 1000 °C. The characteristics of the thin films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The films were then used to fabricate surface acoustic wave (SAW) resonators. The effects of post-annealing on the SAW devices are discussed in this work. Resulting in the 600 °C is determined as optimal annealing temperature for SAW devices. At 400 °C, the microvoids exit between the grains yield large root mean square (RMS) surface roughness and higher insertion losses in SAW devices. The highest RMS surface roughness, crack and residual stress cause a reduction of surface velocity (about 40 m/s) and increase dramatically insertion loss at 1000 °C. The SAW devices response becomes very weak at this temperature, the electromechanical coupling coefficient (k2) of ZnO film decrease from 3.8% at 600 °C to 1.49% at 1000 °C.  相似文献   

7.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

8.
La0.6Sr0.4Co0.2Fe0.8O3 − δ-Ce0.8Gd0.2O1.9 (LSCF-CGO) thin films obtained by spray pyrolysis of a single precursor solution were investigated by XRD, TEM and impedance spectroscopy at annealing temperatures ranging from 500 to 900 °C. Films annealed at 600 °C contained a mixture of amorphous regions and crystalline regions composed of fine crystallites (< 5 nm). Annealing above 600 °C increased the ratio of crystalline to amorphous material, led to the segregation of the films into distinct LSCF and CGO phases, and promoted grain growth. The electrical behavior of the films depended on annealing temperature. At testing temperatures of 400 °C and below, the polarization resistance of films with lower annealing temperatures was larger than the polarization resistance of films with higher annealing temperatures. However, at testing temperatures of 500 °C and above the polarization resistance of films with lower annealing temperatures was equal to or lower than the polarization resistance of films with higher annealing temperatures. This was reflected by the activation energy that decreased with increasing annealing temperature. The varying electrical behavior may be related to microstructural changes that caused bulk diffusion to be the rate-limiting step in films with lower annealing temperatures and oxygen dissociation to be the rate-limiting step in films with higher annealing temperatures.  相似文献   

9.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

10.
Thermally stabilized channel waveguides with Bragg gratings were fabricated by the space-selective precipitation technique of crystalline Ge nanoparticles using KrF excimer laser irradiation. The periodic structures consisting of Ge nanoparticles were formed in Ge-B-SiO2 thin glass films after exposure to an interference pattern of the laser followed by annealing at 600 °C. The channel waveguides with the periodic structures were fabricated by the cladding of the patterned Cr layers on the films. The diffraction peak for the TE-like mode of 11.8 dB depth was observed clearly at a wavelength of 1526.4 nm, indicating that the periodic structure also served as the optical band-pass filter in optical communication wavelength. The spectral shape, diffraction efficiency, and diffraction wavelength remained unchanged even after annealing at 400 °C. Furthermore, a low temperature dependence of the diffraction wavelength - as low as 8.1 pm/°C - was achieved. The diffraction efficiency was further enhanced after subsequent annealing at 600 °C. The space-selective precipitation technique is expected to be useful for the fabrication of highly reliable optical filters or durable sensing devices operating at high temperature.  相似文献   

11.
Using dc magnetron sputtering, Fe/Pt/Au multilayer films were prepared, and the effects of Au layer thickness and annealing temperature on structure and magnetic properties of the Fe/Pt/Au multilayer films were investigated. The as-deposited Fe/Pt/Au multilayer films have good periodic structure with composition modulation along the growth direction. The stress stored in the as-deposited films promoted the ordering of the films annealed at 400 °C. When the films were annealed at 500 °C, the thicker Au layer could restrain the order-disorder transformation region volume and lead to the decrease of the ordered volume fraction with Au layer thickness increasing.  相似文献   

12.
We have investigated the effect of the annealing time on the structural and abnormal optical changes of amorphous platinum oxide thin films on quartz glass substrate by dc magnetron sputtering by using a pure platinum target. With increasing the annealing time, the decomposition phenomenon of a-PtOx and the formation of Pt nanoclusters were also observed. X-ray diffraction and Raman scattering measurements confirmed that the change derives from the formation of Pt nanoclusters due to the thermal decomposition. A transmittance measurement of a-PtOx thin films annealed at 600 °C for 0–4 min demonstrated abnormal optical changes.  相似文献   

13.
Tin oxide has been prepared by thermal oxidation of evaporated tin thin films onto pyrex glass substrates. Films oxidation was achieved in air at a temperature of 600 °C with varied duration from 20min to 3 h. Structural, optical and electrical properties of the films were characterized by means of X-ray diffraction, UV–vis spectroscopy and electrical resistivity measurements respectively. The X-ray analysis revealed the transformation of Sn into SnO2 with preferential orientation along (101) plans. No intermediate phases such as SnO and Sn3O4 were evidenced. It was also found that the SnO2 crystallites orientation changed with the annealing time due to the strain energy effect. Both band gap energy and electrical resistivity decrease with annealing time due to the crystalline quality improvement and films densification. We have noticed that oxidation at 600 °C for 3 h leads to transparent and conductive films with suitable properties for photovoltaic applications.  相似文献   

14.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

15.
FePt multilayer films with and without Al underlayer were prepared by magnetron sputtering on SiO2 substrate and subsequently annealed in vacuum. Experimental results suggest that the existence of Al underlayer can effectively reduce the ordering temperature and increase the coercivity of FePt films. Due to the slight larger lattice constant of Al underlayer than that of FePt films, [Fe (0.66 nm)/Pt (0.84 nm)]30 films begin to order at 350 °C and the coercivity of them reach to 5.7 kOe after annealing at 400 °C for half an hour.  相似文献   

16.
Silicon carbide (SiC) films were synthesized by combined metal vapor vacuum arc (MEVVA) ion implantation with ion beam assisted deposition (IBAD) techniques. Carbon ions with 40 keV energy were implanted into Si(1 0 0) substrates at ion fluence of 5 × 1016 ions/cm2. Then silicon and carbon atoms were co-sputtered on the Si(1 0 0) substrate surface, at the same time the samples underwent assistant Ar-ion irradiation at 20 keV energy. A group of samples with substrate temperatures ranging from 400 to 600 °C were used to analyze the effect of temperature on formation of the SiC film. Influence of the assistant Ar-ion irradiation was also investigated. The structure, morphology and mechanical properties of the deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation, respectively. The bond configurations were obtained from IR absorption and Raman spectroscopy. The experimental results indicate that microcrystalline SiC films were synthesized at 600 °C. The substrate temperature and assistant Ar-ion irradiation played a key role in the process. The assistant Ar-ion irradiation also helps increasing the nanohardness and bulk modulus of the SiC films. The best values of nanohardness and bulk modulus were 24.1 and 282.6 GPa, respectively.  相似文献   

17.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

18.
Al-C-N thin films with different Al contents were deposited on Si (1 0 0) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon and nitrogen gases. These films were subsequently vacuum-annealed at 700 °C and 1000 °C, respectively. The microstructures of as-deposited and annealed films were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM); while the hardness and elastic modulus values were measured by nano-indention method. The results indicated that the microstructure of both as-deposited and annealed Al-C-N films strongly depended on Al content. For thin films at low Al content, film delamination rather than crystallization occurred after the sample was annealed at 1000 °C. For thin films at high Al content, annealing led to the formation of AlN nanocrystallites, which produced nanocomposites of AlN embedded into amorphous matrices. Both the density and size of AlN nanocrystallites were found to decrease with increasing depth from the film surface. With increasing of annealing temperature, both hardness and elastic modulus values were decreased; this trend was decreased at high Al content. Annealing did not change elastic recovery property of Al-C-N thin films.  相似文献   

19.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

20.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号