首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
New nonlinear evolution equations are derived that generalize those presented in a Letter by Matsuno [Phys. Rev. Lett. 69, 609 (1992)]] and a terrain-following Boussinesq system recently deduced by Nachbin [SIAM J Appl. Math. 63, 905 (2003)]]. The regime considers finite-amplitude surface gravity waves on a two-dimensional incompressible and inviscid fluid of, highly variable, finite depth. A Fourier-type operator is expanded in a wave steepness parameter. The novelty is that the topography can vary on a broad range of scales. It can also have a complex profile including that of a multiply valued function. The resulting evolution equations are variable coefficient Boussinesq-type equations. The formulation is over a periodically extended domain so that, as an application, it produces efficient Fourier (fast-Fourier-transform algorithm) solvers.  相似文献   

2.
Boussinesq-type wave equations involve nonlinearities and dispersion. In this paper a Boussinesq-type equation with displacement-dependent nonlinearities is presented. Such a model was proposed by Heimburg and Jackson for describing longitudinal waves in biomembranes and later improved by Engelbrecht, Tamm and Peets taking into account the microinertia of a biomembrane. The steady solution in the form of a solitary wave is derived and the influence of nonlinear and dispersive terms over a large range of possible sets of coefficients demonstrated. The solutions emerging from arbitrary initial inputs are found using the numerical simulation. The properties of emerging trains of solitary waves are analysed. Finally, the interaction of solitary waves which satisfy the governing equation is studied. The interaction process is not fully elastic and after several interactions radiation effects may be significant. This means that for the present case the solitary waves are not solitons in the strict mathematical sense. However, like in other cases known in solid mechanics, such solutions may be conditionally called solitons.  相似文献   

3.
Summary It is shown that the Airy, Boussinesq, Su and Gardner and extended Boussinesq equations for the propagation of shallow-water waves can be easily obtained from Luke's variational principle. The technique of derivation of the equations is examined in detail and used to extend the range of application of the highest-order theories to the case of variable depth. The approach is relatively straightforward and, moreover, points out the hypotheses under which the various equations are derived.  相似文献   

4.
An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg- de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solutions but also for the Painlevd Ⅱ waves and periodic waves expressed by Jacobi elliptic functions for both fourth-order dispersion and second-order dissipation. The method is also valid for strong perturbations.  相似文献   

5.
A dispersion relation is analytically derived for gravitational waves in an ideal incompressible threelayer liquid with a free surface in the presence of a velocity field tangential discontinuity between the layers. The discontinuity results from the motion of the middle layer. The instability of the tangential discontinuity is shown to depend on the relative velocity of contacting layers, which, in turn, depends on the ratio of their densities. The closer the density ratio to unity, the lower the moving layer velocity causing instability. In the given case, instability involves internal waves arising at the second and third interfaces in accordance with the Kelvin–Helmholtz concept of instability development. Internal waves with wavelengths far exceeding the thickness of the middle layer are found to interact with each other. Surface waves only change their frequencies.  相似文献   

6.
We have derived and analyzed the dispersion equation for capillary waves with an arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a space-charged cylindrical jet of an ideal incompressible dielectric liquid moving relative to an ideal incompressible dielectric medium. It has been proved that the existence of a tangential jump of the velocity field on the jet surface leads to a periodic Kelvin–Helmholtz- type instability at the interface between the media and plays a destabilizing role. The wavenumber ranges of unstable waves and the instability increments depend on the squared velocity of the relative motion and increase with the velocity. With increasing volume charge density, the critical value of the velocity for the emergence of instability decreases. The reduction of the permittivity of the liquid in the jet or an increase in the permittivity of the medium narrows the regions of instability and leads to an increase in the increments. The wavenumber of the most unstable wave increases in accordance with a power law upon an increase in the volume charge density and velocity of the jet. The variations in the permittivities of the jet and the medium produce opposite effects on the wavenumber of the most unstable wave.  相似文献   

7.
It is found that considering the dissipation of surface spin waves propagating in arbitrary directions in a magnetized ferromagnetic film results in a substantial change in the dispersion surface: it is transformed from an infinite surface into a closed and bounded one consisting of an upper part with strong attenuation and a lower part with weak attenuation that join along an inclined ellipsoidal curve. The change in the dispersion surface is shown to have a considerable effect on the directions of the group velocity of the waves.  相似文献   

8.
In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.  相似文献   

9.
The propagation of nonlinear guided waves in a slab configuration with arbitrary intensity-dependent dielectric functions is considered. General expressions for the dispersion relations and the guided power flux are derived without explicit integration of the nonlinear Helmholtz equations. One example is investigated in greater detail.  相似文献   

10.
V. P. Ruban 《JETP Letters》2012,95(9):486-491
A nonlinear Schrödinger equation with variable coefficients for surface waves on a large-scale steady nonuniform current has been derived without the assumption of a relative smallness of the velocity of the current. This equation can describe with good accuracy the loss of modulation stability of a wave coming to a counter current, leading to the formation of so-called rogue waves. Some theoretical estimates are compared to the numerical simulation with the exact equations for a two-dimensional potential motion of an ideal fluid with a free boundary over a nonuniform bottom at a nonzero average horizontal velocity.  相似文献   

11.
Starting from the general modal solutions for a homogeneous layer of arbitrary material and crystalline symmetry, a matrix formalism is developed to establish the semianalytical expressions of the surface impedance matrices (SIM) for a single piezoelectric layer. By applying the electrical boundary conditions, the layer impedance matrix is reduced to a unified elastic form whether the material is piezoelectric or not. The characteristic equation for the dispersion curves is derived in both forms of a three-dimensional acoustic SIM and of an electrical scalar function. The same approach is extended to multilayered structures such as a piezoelectric layer sandwiched in between two metallic electrodes, a Bragg coupler, and a semi-infinite substrate as well. The effectiveness of the approach is numerically demonstrated by its ability to determine the full spectra of guided modes, even at extremely high frequencies, in layered plates comprising up to four layers and three materials. Negative slope in f-k curve for some modes, asymptotic behavior at short wavelength regime, as well as wave confinement phenomena made evident by the numerical results are analyzed and interpreted in terms of the surface acoustic waves and of the interfacial waves in connection with the bulk waves in massive materials.  相似文献   

12.
We consider a system consisting of two immiscible fluids and their interface. The equilibrium interface is assumed to be planar. The velocity fields in the fluids are described by the linearized Navier-Stokes equations with appropriate boundary conditions at the interface. Explicit expressions for the response of the system to arbitrary bulk and/or surface forces are derived. In particular, we consider the transmission and reflection of sound modes and conclude that ultrasonic techniques can be used to measure the coefficient of sliding friction between fluids. In addition, we obtain dispersion relations for the free surface modes.  相似文献   

13.
In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications.  相似文献   

14.
A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.  相似文献   

15.
I.IntroductionSincethepublicationoftheclassicalpaper"Onthewavesinanelasticplate"byH.Lambin1917l1l,theterm"LaInbwave"hasbeenusedtorefertoanelasticdisturbancepropagatinginasolidplatewithfreeboundaries.Lambwavesarewidelyusedintheapplicationsofthedefectinspectionofthinwa.lledmaterial[2'8].InrecelltyearsLambwaveshavebeenwide1yusedinthefabricationofsensors.LamInwavesensorsdetectthechangesofenvironmentbymeasuringthechangeofphasevelocityofLambwaves.IncomparisonwithbuIkwavesandSAW's,Lambwavsprovi…  相似文献   

16.
A dispersion relation is derived for capillary waves with arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a jet of an ideal incompressible dielectric liquid moving in an ideal incompressible dielectric medium along an external uniform electrostatic field. A tangential discontinuity in the velocity field on the jet surface is shown to cause Kelvin-Helmholtz periodical instability at the interface and destabilize axisymmetric, flexural, and flexural-deformational waves. Both the flexural and flexural-deformational instabilities have a threshold and are observed not at an arbitrarily small velocity of the jet but starting from a certain finite value. It is shown that the instability of waves generated by the tangential discontinuity of the velocity field is periodic only formally (from the pure mathematical point of view). Actually, the jet disintegrates within the time of instability development, which is shorter than the half-cycle of the wave.  相似文献   

17.
V. P. Ruban 《JETP Letters》2010,92(3):140-145
Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.  相似文献   

18.
We study the deformation of the wind velocity profile due to resonant interactions with waves radiated by the flow over a statistically homogeneous topography. The wind whose velocity vector changes its direction within a layer of finite thickness is considered. Quasilinear equations for the velocity components of the mean flow are derived under large Richardson, numbers and small Froude numbers. It is shown that the modulus of the wind velocity is constant in time and its direction angle satisfies the Riemann equation for simple waves. The flow deformation is determined by the average wave resistance force per unit square. The deformation of the wind velocity profile takes place within the layer between the Earth’s surface and the level where the wind change its direction to the opposite one. At large time scales, the wind velocity vector in this layer approaches the direction opposite to the near-surface one. Institute of Applied Physics, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 3, pp. 255–265, March 1999.  相似文献   

19.
(2+1)-维色散长波方程的折叠孤立波解   总被引:2,自引:2,他引:0  
本文利用一种该进的映射法和线性变量分离法,得到(2+1)-维色散长波方程大量的,带有两个任意函数的精确解。并在得到的一个周期波精确解的基础上,通过选择恰当的函数,可以观察到(2+1)-维色散长波方程的折叠孤立波的演化行为。  相似文献   

20.
Oscillating Solitons for (2+1)-Dimensional Nonlinear Models   总被引:1,自引:0,他引:1  
Using extended homogeneous balance method and variable separation hypothesis,we found new variableseparation solutions with three arbitrary functions of the (2 1)-dimensional dispersive long-wave equations.Based on derived solutions,we revealed abundant oscillating solitons such as dromion,multi-dromion,solitoff,solitary waves,and so on,by selecting appropriate functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号