首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The source of the current in a plasma produced by a 1.7 ns CO2 laser irradiation of a copper target is found to last for to 150 ns. Evidence is shown for a short circuit in the laser plasma which shields the target from the intense magnetic field associated with the current.  相似文献   

2.
激光诱导等离子体中铜原子和铜离子的时空行为   总被引:2,自引:0,他引:2  
通过光谱观察 ,考察了激光诱导铜等离子体的动力学过程和等离子体成分的时空行为 .不同能量的等离子体粒子 ,产生的机制不同 ,在时空演变过程中显示的行为不同 ,它们受背景气氛的影响也不同.By observing the optical emissions from copper plasma induced by laser ablationof a copper target, the dynamics of the plasma and the temporal and spatial behaviors of the plasma species are examined. The plasma is ignited from target ablation, evolves from the breakdown of the copper vapor to collisions between copper particles and energetic electrons. At the initial stage, the plasma contains large amount of copper ions and high-excited copper atoms, and then evolves to have low-energy copper...  相似文献   

3.
We investigated the subpicosecond laser ablation of copper and fused silica under 100 fs laser irradiation at 800 nm in vacuum by means of fast plume imaging and time- and space-resolved optical emission spectroscopy. We found that, to the difference of copper ablation, the laser-generated plasma from a fused silica target exhibited one “main” component only. The “slow” plasma component, observed during copper ablation and usually assigned to optical emission from nanoparticles was not detected by either plasma fast imaging or optical emission spectroscopy even when fused silica targets were submitted to the highest incident fluences used in our experiments. The characteristic expansion velocity of this unique component was about three times larger than the velocity of the fast plume component observed during copper ablation. The dependence of laser fluence on both plasma expansion and ablation rate was investigated and discussed in terms of ablation efficiency and initiation mechanisms.  相似文献   

4.
The results of experimental measurements of the hydrodynamic efficiency of laser plasma for aluminum and copper targets are presented. The studies were performed on the “Kanal-2” laser setup system using the ballistic pendulum method. The pressure in the interaction chamber was 10?4 Torr, the pendulum length was 145 mm, the mass of the pendulum with a target was 7.2 g. At the half-height pulse duration of 2.5 ns, the power density on the target surface was ~1013 W/cm2. In the case of aluminum target, the hydrodynamic efficiency coefficient increased from 1.5% to 4.5% with increasing laser pulse energy from 5 J to 10 J, whereas it remained at the level of 5% for the copper target.  相似文献   

5.
Measurements of ion acceleration in polymethylmethacrylate foils covered by a thin copper film irradiated by fs laser in target normal sheath acceleration regime are presented. The ion acceleration depends on the laser parameters, such as the pulse energy; depends on the irradiation conditions, such as the focal point position of the laser with respect to the target surface; and depends on the target properties, such as the metallic film thickness. The proton acceleration increases in the presence of the metallic film enhancing the plasma electron density, reaching about 1.6 MeV energy for a focal position on the target surface. The plasma diagnostics uses SiC detectors, absorber foils, Faraday cups, and gafchromic films. Employing p‐polarized laser light and a suitable oblique incidence, it is possible to increase the proton acceleration up to about 2.0 MeV thanks to the effects of laser absorption resonance due to plasma waves excitation.  相似文献   

6.
In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.  相似文献   

7.
We are investigating the thermodynamic conditions under which condensation occurs in laser ablated copper plasma plumes. The plasma is created by XeCl excimer laser ablation (308 nm, 300 mJ/pulse) at power densities from 500–1000 MW/cm2 into backing pressures of helium in the range 0–50 torr. We use laser-induced fluorescence (LIF) to probe velocity and relative density of both atomic copper and the copper dimer molecule, Cu2, which is formed during condensation onset. At low pressure (10 mtorr), the atomic Cu velocity peaks at approximately 2×106 cm/s. Copper dimer time-of-flight data suggest that condensation onset occurs after the Cu atoms have slowed very significantly. Excitation scans of the Cu2A-X (0,0) and (1,1) bands yield a rotational and vibrational temperature in the neighborhood of 300 K for all conditions studied. Such low temperatures support the theory that Cu2 is formed under thermally and translationally cold conditions. Direct laser beam absorption is used to determine the number density of atomic copper. Typical densities attained with 5 torr of helium backing gas are 6–8×1013 cm–3. Rayleigh scattering from particulate is easily observable under conditions favorable to particulate production.  相似文献   

8.
利用Nd: YAG脉冲激光在空气中烧蚀金属Cu靶,获得等离子体光谱;采用改变离焦量的方法,研究了离焦量的变化对谱线结构及谱线强度的影响;分析了离焦量分别为1mm、0mm和-2mm时,沿靶面法线方向不同空间距离处电子温度的演化规律;并对等离子体光谱的特性和产生机制进行了讨论. 结果表明,谱线结构、谱线强度和等离子体的电子温度都与离焦量的变化密切相关,聚焦点在-2mm处CuⅠ谱线相对强度出现峰值,电子温度数值最大;聚焦点在-0.5mm和-1.0mm附近谱线相对强度遽然降低的现象是由于等离子体的屏蔽效应造成的.  相似文献   

9.
李丞  高勋  刘潞  林景全 《物理学报》2014,63(14):145203-145203
对磁场约束下激光诱导铜等离子体光谱强度演化进行了实验研究,分析了在磁场约束环境下的等离子体光谱强度演化过程以及激光能量对光谱增强的影响.实验结果表明:在磁场约束下铜等离子体内原子光谱和离子光谱均有所增强,在磁场约束下Cu I 510.55 nm谱线强度时间演化过程中在1.2—5.7μs时间范围内附近出现双峰结构,在距离靶材表面0—1.4 mm空间范围内磁场约束Cu I 510.55 nm光谱增强明显.Cu I510.55 nm和Cu I 515.32 nm光谱增强因子随激光能量的增加呈单调递减变化,激光能量20 mJ时增强因子最大分别为11和8.对磁场约束下等离子体发射光谱强度增强的物理原因进行了探讨.  相似文献   

10.
Emission spectra and the energy distribution of the excited-state population density of atoms and ions in erosion laser plasma from CuInS2 with various crystal-structure orderings are analyzed. It is shown that increased ordering of the target crystal structure causes the excited-state energies of indium atoms generated in the laser erosion plume to increase and that sulfur atoms always emit only in transitions from highly excited states. The ratio of relative ion concentrations in the laser plasma plume is Cu+/In+/S+ = 0.3/0.08/2, which corresponds neither to the atomic ratio of Cu/In/S (1/1/2) in the target nor to the ratio of ionization energies. The results are explained by recombination processes for ions and by the atomization specifics of the CuInS2 target exposed to long-wavelength radiation. The atomization consists essentially of dissociative processes expressed by CuInS2 → CuInS + S and CuInS2 → Cu + InS + S. The electron temperature of polycrystal (single-crystal) plasma at a distance of 1 mm from the target is 0.3 eV (0.4 eV) for atoms and 1.3 eV (2.7 eV) for ions and varies negligibly for plasma up to a distance of 7 mm from the target. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 217–223, March–April, 2008.  相似文献   

11.
刘院省  刘世炳  宋海英  何润 《物理学报》2012,61(4):44204-044204
应用时间分辨光谱技术, 研究了高能量纳秒脉冲激光作用下铜靶表面等离子体产生及演化的物理过程. 实验中相互作用区固-气-液三相对激光能量的吸收明显地反映于激光反射强度随时间的演化中, 使得靶表面物质形态的改变导致激光反射强度随时间呈双峰分布.同时, 随着激光峰值功率密度的增加, 靶面等离子体(气)-固-液相变发生的时间相应提前.因此, 这些瞬态性质是诊断激光-固体靶相互作用中靶面物质相变时间的有效方法.  相似文献   

12.
Optical emission spectra of Nd:YAG laser ablation of KTiOPO4 (KTP) crystal and SnO2:Sb transparent conducting thin film were recorded and analyzed in vacuum and in air. The integral intensities of spectral lines from laser-ablated KTP crystal were obtained as functions of distance from the target surface and laser power density in vacuum and in air. The ambient gas effects on pulsed laser ablation of target were discussed. We also performed laser ablation of SnO2:Sb transparent conducting thin film in air and the electron temperature and full-width at half-maximum (FWHM) of atomic and ionic spectral lines in the plasma were quantified using Boltzmann plot method and Lorentzian fit, respectively. Integral intensities of atomic and ionic Sn spectral lines were also obtained as functions of distance from the target surface and laser irradiance. The intensity ratio of ionic and atomic Sn spectral lines as a function of laser power density was got which gives some information about the variation of ionization ratio with laser irradiance in the plasma produced by high-power laser.  相似文献   

13.
Planar laser-induced fluorescence (PLIF) has been used to determine the relative number density of ground state copper atoms in laser-ablated plasma plumes. An ablation laser power flux of ~1.5 GW/cm 2 is applied to a solid copper target in a background gas, producing a plasma plume suitable for studying homogeneous copper vapor condensation. Density is measured at postablation time delays ranging from 5 μs to 10 ms with 1-100 torr of either argon or helium as the background gas. Planar laser-induced fluorescence images are used to spatially resolve the relative density within the plume, The decrease in density is due to the homogeneous condensation of copper vapor to form particulate  相似文献   

14.
The compounds induced on the surface of titanium and copper targets by a breakdown plasma produced by focused TEA-CO2 high-repetition frequency laser pulses was studied by transmission electron microscopy and selected area diffraction in correlation with absorptivity data determined before and after laser irradiation. The possibility of using TEA-CO2 lasers to produce complex thermal treatments was demonstrated for metallic surfaces by the modification of the physico-chemical properties at the sites of plasma action on these surfaces.  相似文献   

15.
We present the optical emission studies of sulphur (S) plasma generated by the first (1064 nm) and second (532 nm) wavelengths of a Q-switched Nd:YAG laser. The target material was placed in front of laser beam in air at atmospheric pressure. The experimentally observed line profiles of neutral sulphur have been used to extract the electron temperature (T e ) using the Boltzmann plot method, whereas the electron number density (N e ) has been determined from the Stark broadening. The electron temperature is calculated by varying, distance from, the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of number density as a function of laser irradiance as well as its variation with distance from the target surface. It is observed that electron temperature and electron number density increases as laser irradiance is increased.  相似文献   

16.
A simple self-triggered plasma shutter for switching a high power laser beam was demonstrated. The triggering action comes from the surface plasma of a metal target. Several materials were tested and it was found that for copper, the amplitude fluctuation in the triggering was only 5%.  相似文献   

17.
基于1064 nm Nd:YAG激光器,对比研究了紫铜和黄铜等离子的特征参数。洛仑兹函数拟合Cu I 324.75 nm得到紫铜和黄铜等离子体的电子密度分别是3.61017 cm-3和3.31017 cm-3。为了减小谱线自发辐射跃迁几率不确定性和测量误差带来的计算误差,采用改进型迭代玻耳兹曼算法精确求解紫铜等离子体和黄铜等离子体的电子温度分别是6316 K和6051 K,分析表明,两种等离子体特征参数的差异主要是由于黄铜中的锌元素的电离能(9.39 eV)大于铜元素的电离能(7.72 eV)而造成的。实验数据证实激光诱导的紫铜和黄铜等离子体满足局部热力学平衡模型和光学薄模型。  相似文献   

18.
The emission characteristics and parameters of laser plumes of tin and CuSbSe2 compound are studied at distances of 1 and 7 mm from the target. The recombination times of singly and doubly charged tin ions are, respectively, 116 and 27 ns at a distance of 1 mm from the target and 148 and 64 ns at a distance of 7 mm. In the case of the CuSbSe2 compound, the recombination times of antimony and copper ions are determined to be, respectively, 60 and 75 ns at a distance of 1 mm and 707 and 976 ns at a distance of 7 mm. The time-averaged temperatures and concentrations of electrons of the tin laser plasma are determined at a distance of 7 mm from the target (T e = 0.42 eV and n e = 2.9 × 1015 cm?3), and the same parameters for the laser plasma based on the CuSbSe2 compound are determined at distances of 1 and 7 mm from the target (T e = 0.62 eV, n e = 1.4 × 1016 cm?3 and T e = 0.86 eV, n e = 8.4 × 1015 cm?3).  相似文献   

19.
Optical emission spectra of the plasma produced by 1.06 μm Nd:YAG laser ablation of SnO2:Sb transparent conducting thin film were recorded and analyzed as functions of distance from the target surface and incident laser power density in air and in vacuum. Ambient gas effects on pulsed laser ablation of target were analyzed in detail. We also discussed how the air takes part in the plasma evolution process and confirmed that the ignition of the air plasma is by the collisions between the energetic electrons and the nitrogen atoms through a cascade avalanche process.  相似文献   

20.
The distribution of emission from excited states of a copper atom in erosion plasmas formed in vacuum by the action of neodymium laser pulses with a power density of (3–5)×108 W/cm2 on a copper target is studied. Averaged spectra and oscillograms of emission of Cu I lines were recorded in a region of 210–600 nm. Resonant lines of Cu I, lines of cascade transitions to resonant levels of Cu I, and lines from shifted levels of a copper atom are shown to possess the highest intensity. Oscillograms of emission at Cu I transitions have two peaks, which may be associated with two phases of surface evaporation of copper: under the action of a Nd3+:YAG laser pulse and radiation of the core of an erosion plasma plume. The relationship between the intensities of peaks in oscillograms of emission of Cu I lines points to the presence of a considerable cascade contribution to the population of the resonant states of Cu I and self-absorption of resonant lines of a copper atom at the first stage of evaporation of a copper target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号