首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 88 毫秒
1.
We have developed a three-dimensional electron-photon Monte Carlo transmission (MCT) code.The conversiontransmissivity coefficient of hot electron x-ray,ηct,is analysed theoretically and simulated numerically using the MCT code.Experiments of disc and cylindrical targets have been performed at the Shenguang-Ⅱ laser facility.A Multi-channel filter-fluorescence spectrometer was used to obtain the hard x-ray spectrum.The temperature and energy of hot electrons are induced from the hard x-ray spectrum and the ηct value.The average energy fraction of hot electrons is 14% of incident laser energy for the 1ωNd laser and the spherical target with an average temperature of hot electrons of 36keV,while it is 15% for the 1ωNd laser and the cavity target with an average temperature of 54keV.We have also obtained the results of 5.6% and 13.3keV for the 3ωNd laser and the disc target,4.9% and 17.9keV for the 3ωNd laser and the half cavity target with a thin wall,and 2.1% and 22.4keV for those with a thick wall.The experimental results agree with theory and simulation.  相似文献   

2.
Ultrashort multi-ke V x-ray pulses are generated by electron plasma produced by the irradiation of femtosecond pulses on metals. These sub-picosecond x-ray pulses have extended the field of x-ray spectroscopy into the femtosecond time domain. However, pulse-to-pulse instability and long data acquisition time restrict the application of ultrashort x-ray systems operating at low repetition rates. Here we report on the performance of a femtosecond laser plasma-induced hard x-ray source that operates at 1-k Hz repetition rate, and provides a flux of 2.0 × 1010 photons/s of Cu Kαradiation. Using this system for time-resolved x-ray diffraction experiments, we record in real time, the transient processes and structural changes induced by the interaction of 400-nm femtosecond pulse with the surface of a 200-nm thick Au(111) single crystal.  相似文献   

3.
An investigation of x-ray emission from Cu plasma produced by 1.054 μm Nd:glass laser pulses of 5 ns duration, at 2 × 1012 − 2 × 1013 W cm−2 is reported. The x-ray emission has been studied as a function of target position with respect to the laser beam focus position. It has been observed that x-ray emissions from ns duration plasma show a volume effect similar to subnanosecond plasmas. Due to this effect the x-ray yield increases when target is moved away relative to the best focal plane of the laser beam. This result supports the theoretical model of Tallents and has also been testified independently using suitably modified theoretical model for our experimental conditions. While above result is in good agreement with similar experimental results obtained for sub-nanosecond laser produced plasmas, it differs from result claiming filamentation rather than pure geometrical effect leading to x-ray enhancement for ns plasmas.  相似文献   

4.
A grazing incidence pumping x-ray laser scheme using JIGUANG Ⅱ is proposed. We investigate the characteristics of the focusing of parabolas, and obtain the optimal intensity distributions in the target surfaces with paraboloid mirrors of different parameters by the vectorial ray-tracing. Kinetic simulations are carried out. The results show that due to the enhancement of absorption by the selectable plasma region (gain region), saturated amplification of the x-ray laser can be achieved with 100 mJ energy in pre and pumping pulses, respectively, on 3 mm Ti targets.  相似文献   

5.
With the advent of ultrashort high intensity laser pulses,laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applications of high intensity lasers,including the hot electron production for fast ignition of fusion targets,table-top bright X-ray and gamma-ray sources,ion acceleration,compact neutron sources,and generally the creation of high energy density matters.Normally,some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses.The peculiar aspects with ultrashort laser pulses are that their absorption depends significantly on the preplasma condition and the initial target structures.Meanwhile,relativistic nonlinearity and ponderomotive force associated with the laser pulses lead to new mechanisms or phenomena,which are usually not found with nanosecond long pulses.In this paper,we present an overview of the recent progress on the major absorption mechanisms in intense laser–solid interactions,where emphasis is paid to our related theory and simulation studies.  相似文献   

6.
Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1.06 μm radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.  相似文献   

7.
This report presents the results of a theoretical study and 2D numerical simulations of the interaction of subnanosecond iodine laser pulses with an Al-foil target. The target and laser parameters correspond to the experimental conditions of the “PERUN” iodine laser facility (IP, Prague: pulse energy <50 J, ∼300 psec, focal spot d ∼100 μm; target: Al foil of thickness 30 μm). The simulations were made by using the two-dimensional Lagrange code “ATLANT” (FIAN-IMM, Moscow). We varied the diameter of the focal spot and studied the dependence of the plasma parameters (temperature, x-ray yield, etc.) on the laser flux density and the diameter of focal spots. The numerical results were compared with experimental data. Published as Preprint No. 38 of the Lebedev Physics Institute (FIAN), Moscow, 1993.  相似文献   

8.
葛愉成 《中国物理 B》2008,17(12):4492-4497
The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.  相似文献   

9.
葛愉成 《中国物理 B》2009,18(4):1473-1478
The photoelectron energy spectra (PESs) excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated. Transfer equations are used to reconstruct the detailed temporal structure of an attosecond x-ray pulse directly from a measured PES. Theoretical analysis shows that the temporal uncertainties of the pulse reconstruction depend on the x-ray bandwidth. The procedure of pulse reconstruction is direct and simple without making any previous pulse assumption, data fitting analysis and time-resolved measurement of PESs. The temporal measurement range is half of a laser optical cycle.  相似文献   

10.
For experiments such as on Ni-like Ag x-ray laser, driven by 1\omega laser, the gain region is only several~nm depth near the target surface, this paper proposes a new two-layer target, in which a thin layer (several nm depth) of silver is plated on the surface of some other materials. Furthermore, the Ni-like Ag 13.9~nm x-ray laser produced by three new kinds of two-layer target with CH, Al and Ge as foundation, was theoretically studied.  相似文献   

11.
We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s?2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.  相似文献   

12.
We demonstrate a novel method to monitor the total angular distribution of the spectrum of hard x-ray emission from a plasma generated with femtosecond laser pulses with an intensity of 5 x 10(18) W/cm2 on a solid target. Measured and calculated angular distributions of x rays show a pronounced anisotropy for MeV photon energies. We complemented the spectral information by demonstrating a (gamma,n) nuclear reaction with a tabletop laser system.  相似文献   

13.
We report the generation of ultrashort, hard-x-ray pulses from a liquid mercury target irradiated by 5 kHz laser pulses. The new x-ray source is designed for time-resolved x-ray absorption spectroscopy as well as imaging applications. This marks the first laser-driven plasma x-ray source that continuously recycles the target material, facilitating maintenance-free operation. Theoretical calculations show mercury targets emit shorter x-ray pulses than targets of lighter elements under identical illumination and x-ray detection conditions.  相似文献   

14.
We achieved a continuous, stable, ultrashort pulse hard x-ray point source by focusing 1.8-W, 1-kHz, 50-fs laser pulses onto a novel, 30-microm -diameter, high-velocity, liquid-metal gallium jet. This target geometry avoids most of the debris problems of solid targets and provides nearly 4pi illumination. Photon fluxes of 5x10(8) photons/s are generated in a two-component spectrum consisting of a broad continuum from 4 to 14 keV and strong K(alpha) and K(beta) emission lines at 9.25 and 10.26 keV. This source will find wide use in time-resolved x-ray diffraction studies and other applications.  相似文献   

15.
Highly intense picosecond and subpicosecond laser pulses interacting with solids can create hot and dense plasmas which emit x-ray pulses in a broad spectral range from 100 eV up to MeV. The duration of these x-ray pulses depends on the transient behaviour of the relaxation and recombination mechanisms, as well as on the lifetime of energetic electrons produced via nonlinear processes in the plasma. This paper reports experiments using a 1.5-ps laser pulse with high constrast ratio (up to 1010) and intensities up to 1018 W cm-2 irradiating solid targets. Both the line spectrum characteristics of a magnesium plasma, recorded using crystal spectrometers with high spectral resolution, and kinetic calculations have allowed the deduction of plasma parameters in the process of plasma evolution. In addition, hard x-ray pulses from a tantalum plasma were measured and their scaling was explained as bremsstrahlung emission from energetic electrons. Absolute dose values of x-ray pulses are given.  相似文献   

16.
We propose and analyze a regenerative-amplifier free-electron laser (FEL) to produce fully coherent, hard x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches regeneratively amplifies the radiation intensity and broadens its spectrum, allowing for effective transmission of the x rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about 2 to 3 orders of magnitude higher than that from a single-pass SASE FEL.  相似文献   

17.
Irradiation of a planar solid by an intense laser pulse leads to fast electron acceleration and hard x-ray production. We have investigated whether this high field production of fast electrons can be controlled by introducing dielectric spheres of well-defined size on the target surface. We find that the presence of spheres with a diameter slightly larger than half the laser wavelength leads to Mie enhancements of the laser field which, accompanied by multipass stochastic heating of the electrons, leads to significantly enhanced hard x-ray yield and temperature.  相似文献   

18.
We demonstrate a high-gain nickel-like xenon-ion x-ray laser, using a picosecond-laser-irradiated gas-puff target. The elongated x-ray laser plasma column was produced by irradiation of the gas-puff target with line-focused double picosecond laser pulses with a total energy of 18 J in a traveling-wave excitation scheme. Strong lasing at 9.98 nm was observed, and a high gain coefficient of 17.4 cm(-1) was measured on the transient collisionally excited 4d-4p , J=0-1 transition for nickel-like xenon ions with target lengths as great as 0.45 cm. A weak nickel-like lasing line at a shorter wavelength of 9.64 nm was also observed, with a gain coefficient of 5.9 cm(-1) .  相似文献   

19.
We present the first experimental evidence of the subpicosecond duration of x-ray pulses emitted from laser-irradiated clusters, demonstrating the suitability of such a debris free target for ultrafast x-ray science applications. The K-shell emission (approximately 3 keV) from large Ar clusters (6 x 10(5) to 4 x 10(6) atoms) is time resolved, when irradiated by ultrashort (40 fs to 5 ps) and intense laser pulses (10(15-17) W/cm2). The observations are supported by hydrodynamical and collisional-radiative calculations, that reproduce the extremely short x-ray pulse duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号