首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a chain of nonlinear oscillators, linearly coupled to their nearest neighbors, all travelling waves of small amplitude are found as solutions of finite dimensional reversible dynamical systems. The coupling constant and the inverse wave speed form the parameter space. The groundstate consists of a one-parameter family of periodic waves. It is realized in a certain parameter region containing all cases of light coupling. Beyond the border of this region the complexity of wave-forms increases via a succession of bifurcations. In this paper we give an appropriate formulation of this problem, prove the basic facts about the reduction to finite dimensions, show the existence of the ground states and discuss the first bifurcation by determining a normal form for the reduced system. Finally we show the existence of nanopterons, which are localized waves with a noncancelling periodic tail at infinity whose amplitude is exponentially small in the bifurcation parameter. Received: 10 September 1999 / Accepted: 15 December 1999  相似文献   

2.
We investigate a multi-agent system with a behavior akin to the cluster formation in systems of coupled oscillators. The saturating attractive interactions between an infinite number of non-identical agents, characterized by a multimodal distribution of their natural velocities, lead to the emergence of clusters. We derive expressions that characterize the clusters, and calculate the asymptotic velocities of the agents and the critical value for the coupling strength under which no clustering can occur. The results are supported by mathematical analysis.For the particular case of a symmetric and unimodal distribution of the natural velocities, the relationship with the Kuramoto model of coupled oscillators is highlighted. While in the generic case the emergence of a cluster corresponds to a second-order phase transition, for a specific choice of the natural velocity distribution a first-order phase transition may occur, a phenomenon recently observed in the Kuramoto model. We also present an example for which the clustering behavior is quantitatively described in terms of the coupling strength.As an illustration of the potential of the model, we discuss how it applies to the dynamic process of opinion formation.  相似文献   

3.
We investigate the existence and the stability of waves and phase locked states in rings of coupled oscillators with delayed interactions. Using center manifold reduction and the normal form method, we reduce the equation governing the dynamics of the whole network to an amplitude-phase model (i.e. a set of coupled ordinary differential equations describing the evolution of both the amplitudes and the phases of the oscillators). Then we prove the existence of traveling waves, in-phase and anti-phase locked oscillations, in both one-dimensional and two-dimensional lattices. The influence of the interaction strength and the number of oscillators is investigated, and the possible coexistence of waves and phase locked oscillations is shown.  相似文献   

4.
We show that a ring of unidirectionally delay-coupled spiking neurons may possess a multitude of stable spiking patterns and provide a constructive algorithm for generating a desired spiking pattern. More specifically, for a given time-periodic pattern, in which each neuron fires once within the pattern period at a predefined time moment, we provide the coupling delays and/or coupling strengths leading to this particular pattern. The considered homogeneous networks demonstrate a great multistability of various travelling time- and space-periodic waves which can propagate either along the direction of coupling or in opposite direction. Such a multistability significantly enhances the variability of possible spatio-temporal patterns and potentially increases the coding capability of oscillatory neuronal loops. We illustrate our results using FitzHugh-Nagumo neurons interacting via excitatory chemical synapses as well as limit-cycle oscillators.  相似文献   

5.
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These nonlocal models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but also those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.  相似文献   

6.
We investigate a system of coupled phase oscillators with nearest neighbors coupling in a chain with fixed ends. We find that the system synchronizes to a common value of the time-averaged frequency, which depends on the initial phases of the oscillators at the ends of the chain. This time-averaged frequency decays as the coupling strength increases. Near the transition to the frozen state, the time-averaged frequency has a power law behavior as a function of the coupling strength, with synchronized time-averaged frequency equal to zero. Associated with this power law, there is an increase in phases of each oscillator with 2pi jumps with a scaling law of the elapsed time between jumps. During the interval between the full frequency synchronization and the transition to the frozen state, the maximum Lyapunov exponent indicates quasiperiodicity. Time series analysis of the oscillators frequency shows this quasiperiodicity, as the coupling strength increases.  相似文献   

7.
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported π state and travelling wave state in the one with natural frequencies followingLorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.  相似文献   

8.
We investigate phase-locked solutions of a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. Equilibrium relations for both synchronous and travelling wave solutions in the parameter space characterizing the nonlocality and time delay are delineated. For the synchronous states a comprehensive stability diagram is presented that provides a heuristic synchronization condition as well as an analytic relation for the marginal stability curve. The relation yields simple stability expressions in the limiting cases of local and global coupling of phase oscillators.  相似文献   

9.
The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics, ranging from periodic solutions through to spatio-temporal chaos. In this paper, we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly, we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability, we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.  相似文献   

10.
We consider networks of coupled phase oscillators of different complexity: Kuramoto–Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.  相似文献   

11.
12.
Periodic structure theory is used to study the interactions between flexural and longitudinal wave motion in a beam (representing a plate) to which offset spring-mounted masses (representing stiffeners) are attached at regular intervals. An equation for the propagation constants of the coupled waves is derived. The response of a semi-infinite periodic beam to a harmonic force or moment at the finite end is analyzed in terms of the characteristic free waves corresponding to these propagation constants. Computer results are presented which show how the propagation constants are affected by the coupling, and how the forced response varies with distance from the excitation point. The spring-mounted masses can provide very high attenuation of both longitudinal and flexural waves when no coupling is present, but when coupling is introduced the two waves combine to give very low (or zero) attenuation of the longitudinal wave. The influence of different damping levels on spatial attenuation is also studied.  相似文献   

13.
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.   相似文献   

14.
杨俊忠  章梅 《中国物理快报》2005,22(12):3195-3198
The spiral waves in a system of two-dimensional coupled oscillators with spatial period-2 structure are investigated. We find a sandwiched spiral wave where any adjacent oscillators are in anti-phase. We show that the propagation rate of the sandwiched spiral wave is insensitive to the change of the coupling constant. The influences of the local kinetics on the sandwiched spiral wave are also investigated.  相似文献   

15.
《Physics letters. A》2019,383(17):2056-2060
The collective dynamics of a network of nonlinear oscillators can be represented in terms of activity level of the network. We have studied a universal transition from activity to inactivity in a globally coupled network of identical oscillators. We consider mixed coupling, where some of the network elements interact through the similar variables while others with dissimilar variables. The coupling strength at which the network become inactive is inversely proportional to the fraction of oscillators coupled through dissimilar variables. Results are presented for the network of various globally coupled limit-cycle oscillators such as Stuart-Landau oscillators, MacArthur prey-predator model as well as for the chaotic Rössller oscillators. The analytical condition for the onset of inactivity in the system is calculated using linear stability analysis which is found to be in good agreement with the numerical results.  相似文献   

16.
We consider a variant of two coupled Van der Pol oscillators with both attractive and repulsive mean-field interactions. In the presence of attractive coupling, the system is in the complete synchrony, while repulsive coupling shows anti-synchronization state leading to suppression of oscillations with increasing interaction strength. The coupled system with both attractive and repulsive interactions shows competitive tendencies of being complete synchronization and anti-synchronization resulting in the stabilization of the fixed point. We have also studied the effect of the damping coefficient of the VdP oscillator on the nature of the transition from oscillatory to a steady-state. These oscillators stabilize to unstable equilibrium point or coupling dependent inhomogeneous steady state via second or first-order transitions respectively depending upon the damping coefficient and coupling strength. These transitions are analyzed in the parameter plane by analytical and numerical studies of the two coupled Van der Pol oscillators.  相似文献   

17.
A new method to determine a coupling function in a phase model is theoretically derived for coupled self-sustained oscillators and applied to Belousov-Zhabotinsky (BZ) oscillators. The synchronous behavior of two coupled BZ reactors is explained extremely well in terms of the coupling function thus obtained. This method is expected to be applicable to weakly coupled multioscillator systems, in which mutual coupling among nearly identical oscillators occurs in a similar manner. The importance of higher-order harmonic terms involved in the coupling function is also discussed.  相似文献   

18.
We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.  相似文献   

19.
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled R?ssler oscillators.  相似文献   

20.
The present work examines in detail the existence, stability and dynamics of travelling solitary waves in a Schrödinger lattice with saturable nonlinearity. After analysing the linear spectrum of the problem in the travelling wave frame, a pseudo-spectral numerical method is used to identify weakly nonlocal solitary waves. By finding zeros of an appropriately crafted tail condition, we can obtain the genuinely localized pulse-like solutions. Subsequent use of continuation methods allows us to obtain the relevant branches of solutions as a function of the system parameters, such as the frequency and intersite coupling strength. We examine the stability of the solutions in two ways: both by imposing numerical perturbations and observing the solution dynamics, as well as by considering the solutions as fixed points of an appropriate map and computing the corresponding Floquet matrix and its eigenvalues. Both methods indicate that our solutions are robustly localized. Finally, the interactions of these solutions are examined in collision type phenomena, observing that relevant collisions are near-elastic, although they may, under appropriate conditions, lead to the generation of an additional pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号