首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass spectrometry is used to study the reaction mechanism of platinum (Pt) atomic layer deposition (ALD) on large quantities of high surface area silica gel particles in a fluidized bed reactor. (Methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and oxygen are used as precursors. Studies are conducted at a substrate temperature of 320 °C. The self-limiting behavior of ALD appears to be disrupted with overexposure of Pt precursor. The amount of the deposited Pt and the size of the Pt nanoparticles increase with an increasing overdose time of Pt precursor. This can be explained by the thermal decomposition of Pt precursor at the reaction temperature of 320 °C and the in situ sintering of Pt nanoparticles forming larger particles. This finding is significant and its understanding is essential for better control of Pt deposition to achieve desirable morphological and structural properties for different application requirements.  相似文献   

2.
PtSn bimetallic catalyst nanoparticles were grown on highly oriented pyrolytic graphite (HOPG) surfaces using the sequential deposition and co-deposition of Pt and Sn. The surface morphology and composition of the prepared PtSn catalysts were investigated by scanning tunneling microscopy and CO adsorption experiment. It is found that the structure of the PtSn catalysts can be controlled by the deposition process. The deposition sequence of 1st Pt and 2nd Sn and co-deposition of Pt and Sn produce Sn-shell and Pt-core structure, while the deposition sequence of 1st Sn and 2nd Pt leads to the growth of individual Pt and Sn particles. The formation of various PtSn bimetallic structures was attributed to the different surface energy of Pt and Sn, and the interaction of the metals with the HOPG surfaces.  相似文献   

3.
Pt particles in a uniform dispersion were successfully synthesized on single-site photocatalyst (Ti-containing mesoporous silica (Ti-HMS)) under UV-light irradiation by a photo-assisted deposition (PAD) method. Using an aqueous solution of H2PtCl6 as a precursor, the nano-sized Pt metal particles were deposited directly on the photo-excited tetrahedrally coordinated titanium oxide moieties within the framework of mesoporous silica (PAD-Pt/Ti-HMS). The Pt catalysts were characterized by means of XRD, Pt LIII-edge XAFS, CO adsorption, and TEM analysis. It was demonstrated that Pt particles had mean diameter of 4 nm in a narrow size distribution. Meanwhile, Pt particles loaded by a conventional impregnation method (imp-Pt/Ti-HMS) showed a wide size distribution ranging from 2 to 30 nm. The PAD-Pt/Ti-HMS catalyst was more active in the CO oxidation than the conventional impregnated imp-Pt/Ti-HMS catalyst. It is suggested that the PAD method using single-site photocatalyst is a useful and unique technique to prepare fine and uniform Pt nanoparticles.  相似文献   

4.
We present results from an investigation of the Pt/TiO(2) catalyst system using a combination of Z-contrast imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Evidence of a strong interaction between the Pt particles and the support is found to be dependent on the Pt cluster size, being manifested either as an encapsulation of the Pt particles by the support or a distortion of the structure of the Pt particles. In the case of clusters that are only a few atoms in size, we show direct evidence of an epitaxial nucleation relationship between Pt and Titania. The results also show unexpectedly that Pt particles exhibit a preferential nucleation on rutile rather than anatase.  相似文献   

5.
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.  相似文献   

6.
A method to prepare a core–shell structure consisting of a Pt metal core coated with a silica shell (Pt(in)SiO2) is described herein. A silica shell was grown on poly(vinylpyrrolidone) (PVP)-stabilized Pt nanoparticles 2–3 nm in size through hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) in a water/ethanol mixture with ammonia as a catalyst. This process requires precise control of the reaction conditions to avoid the formation of silica particles containing multiple Pt cores and core-free silica. The length of PVP molecules, water content, concentration of ammonia and Pt nanoparticles in solution were found to significantly influence the core–shell structure. By optimizing these parameters, it was possible to prepare core–shell particles each containing a single Pt nanoparticle with a silica layer coating approximately 10 nm thick.  相似文献   

7.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

8.
Electron scattering on stored Pt(CN)2-4 and Pt(CN)2-6 centrosymmetric molecular dianions has been performed at the electrostatic storage ring ELISA. The thresholds for production of neutral particles by electron bombardment were found to be 17.2 and 18.7 eV, respectively. The relatively high thresholds reflect the strong Coulomb repulsion in the incoming channel as well as a high energetic stability of the target electrons. A trianion resonance was identified with a positive energy of 17.0 eV for the Pt(CN)2-4 square-planar complex, while three trianion resonances were identified for the Pt(CN)2-6 octahedral complex with positive energies of 15.3, 18.1, and 20.1 eV.  相似文献   

9.
Fine particles of rutile TiO2 supporting nanosized particles of Pt were prepared by a simultaneous in situ sonochemical reduction and deposition method using a standing wave sonochemical reactor (SWSR). The mean diameter of sonochemically obtained Pt particles are of 2 nm. Following this sonochemical technique, rutile TiO2 was also deposited with different weight percentages of Pt. Catalytic function of the prepared composite catalysts were tested by the oxidation of CO to CO2. From the catalytic activity results, it has been found out that the catalysts prepared by the sonochemical method exhibited higher catalytic activity for CO oxidation, probably attributed to the higher Pt particle distribution achieved under sonication. Transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and diffuse reflectance spectroscopy (DRS) were employed to characterize the resulting material.  相似文献   

10.
Rod-like and particle-like La2O2CO3 and La2O3 were obtained via morphology-preserved thermal transformation of the La(OH)3 precursors. La2O2CO3- and La2O3-supported Pt catalysts were prepared by impregnation method and tested in the liquid-phase crotonaldehyde hydrogenation reaction. The textural and physicochemical properties of the samples were studied by a series of techniques including XRD, TG-DSC, N2 adsorption–desorption, TEM and HRTEM, IR spectrum, H2-TPD, and H2-TPR. Even after 600 °C reduction, Pt particles of about 0.8–2.8 nm interplayed with support surface to form Pt-doped interface, thereby preventing the catalysts from migration and affording a high dispersion of platinum. The specific exposed crystal-facets and surface oxygen species depending on the shape of the support affected the preferential deposition of Pt species and the metal-support interaction. Thus, Pt catalysts performed different physicochemical properties and catalytic performance relying on the morphology and structure of the supports. During the cycle experiment, severe deactivation was observed for NP-supported catalysts with an increased selectivity due to the aggregation and growth of Pt particles. Meantime, the NR-supported catalysts retained relatively high reactivity as a consequence of the crystal-facet confinement of rod-shaped lanthanum supports.  相似文献   

11.
The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.  相似文献   

12.
Ultrathin films or particles of atomic layer deposition (ALD) on high surface can improve the activity and durability of catalyst fields, so depending on the surface state, the ALD growth mechanism on porous materials should be systematically investigated and optimized to improve their characteristics of catalysts. Herein, a Pt catalyst used in polymer electrode membrane fuel cell (PEMFC) applications is synthesized through fluidized-bed-reactor ALD on carbon black whose surface is modified through treatment with citric acid. The functional groups, analyzed through X-ray photoelectron spectroscopy (XPS), are found to be maximized after 60 min of acid treatment with stirring. Compared with bare carbon (untreated), the acid-treated carbon presents rich oxidized functional groups and abundant defects but lower surface areas and pore volumes. After ALD Pt deposition, highly dense, uniform, and well-dispersed Pt nanoparticles (NPs) are observed on the carbon black subjected to acid treatment, because of the favorable surface modifications for ALD growth resulting from the acid treatment. The ALD-Pt NPs on the acid-treated carbon exhibit larger electrochemical active surface areas, improved oxygen reduction reactions, and PEMFC performances, when compared with that of NPs on bare carbon with similar Pt weight loading.  相似文献   

13.
采用时间分辨红外光谱直接观测了甲醇在Pt/TiO2上光催化反应制氢过程中光生电子还原氢离子生成氢气的反应过程.结果表明Pt的担载量存在一最佳值,使得该催化剂中光生电子的反应速度最快.当Pt担载量相同时,Pt/TiO2催化剂中光生电子参与产氢反应的速度随样品还原温度的不同而明显变化.可能的原因是较高温度下氢气还原的Pt/TiO2催化剂中Pt粒子占据了TiO2表面的一些能够解离吸附甲醇的活性位置,而对于较低温度下氢气还原的Pt/TiO2催化剂,这种占据作用很不明显.实验中还发现瞬态动力学研究中光生电子衰减较快  相似文献   

14.
《Solid State Ionics》2006,177(26-32):2297-2300
Simultaneous decomposition of nitrogen oxides (NOx) and solid state graphite particles were carried out using a 8 mol% Y2O3 doped ZrO2 (YSZ) based electrochemical reactor with a nano-structured NOx selective multilayer cathode and an oxidative porous anode. The ceramic electrochemical cell was prepared by screen-printing a Pt and a NiO–YSZ pastes as cathode layers and a 12 CaO7Al2O3–Pt paste as an anode layer on the YSZ electrolyte, respectively. Simultaneous decomposition of NOx and graphite particles was investigated using the cell with coated graphite particles on the surface of the 12 CaO7Al2O3–Pt composite anode in 1000 ppm NOx–He gas flow under applying DC voltage at 475 °C. The coated graphite particles at the anode were removed completely with 80% NOx decomposition by electrochemical reactions.  相似文献   

15.
Infrared spectroscopic evidence is presented for the formation of linearly bonded CO species, as a result of surface interaction between H2 and CO2 at room temperature over silicalite-supported Pt. Comparison with direct CO adsorption results suggests that the active sites for this CO2 reaction are the corner or step sites on platinum particles. The CO formed on these active sites then migrates to other sites on the surface of Pt particles. Co-adsorbed hydrogen and water make the linearly bonded CO species more strongly adsorbed on Pt particles. However, exposure to oxygen or air at room temperature effectively removes these CO species.  相似文献   

16.
We use molecular dynamics simulations to show how 2D anchoring patterns on a substrate can be utilised to accurately control the placement and morphology of nucleating 3D nanostructures. The 2D anchoring patterns for our model system consisted of a Pt ad-atom island on a Pt substrate with a surrounding monolayer of Ag atoms. The crystallographic direction of the Pt/Ag boundaries comprising the 2D anchoring pattern and the shape of the pattern was found to have a significant effect on the resultant 3D nanostructures to the extent that one can force nanostructures to have unstable facets, changing the appearance of nanostructures completely. We used the Pt/Ag system as a model to study the effects of square, rectangular and triangular anchoring patterns on Pt(111) and Pt(100) substrates. However, the processes observed are thought to result from the successful altering of the growth mode from Frank–Van der Merwe to Volmer–Weber growth; hence, these processes should be quite general and applicable to other systems.  相似文献   

17.
J.B. Park  D.A. Chen 《Surface science》2006,600(14):2913-2923
The growth of Pt on clusters on TiO2(1 1 0) in the presence and absence of Rh was investigated by scanning tunneling microscopy (STM) for Pt deposited on top of 0.3 ML Rh clusters (Rh + Pt). In situ STM studies of Pt growth at room temperature show that bimetallic clusters are produced when Pt is directly incorporated into existing Rh clusters or when newly nucleated clusters of pure Pt coalesce with existing Rh clusters. Low energy ion scattering experiments demonstrate that Rh is still present at the surface of the clusters even after deposition of 2 ML of Pt, indicating that Rh atoms can diffuse to the cluster surface at room temperature. Rh clusters were found to seed the growth of Pt clusters at room temperature as well as 100 K and 450 K. Furthermore, clusters as large as 100 atoms were observed to be mobile on the surface at room temperature and 450 K, but not at 100 K. Pt deposition at 100 K exhibited more two-dimensional cluster growth and higher cluster densities compared to room temperature experiments due to the lower diffusion rate. Increased diffusion rates at 450 K resulted in more three-dimensional cluster growth and lower densities for pure Pt growth, but cluster densities for Pt + Rh growth were the same as at room temperature.  相似文献   

18.
An X-ray diffraction study was carried out on powders of a series of catalysts prepared from aqueous solutions of H2PtCl6 and PdCl4 and amorphous SiO2 with different concentrations in weight of Pt and Pd at about 4% in overall metallic weight. Measurements of the position of high angle Bragg reflections in the diffractograms show evidence of the fact that the small catalyst particles are bi-metallic Pt-Pd crystals having a face-centred cubic Bravais lattice. The lattice constant of these crystals was found to change with the relative concentration of Pt and Pd by following the Vegard’s rule. This correlation leads to the conclusion that the bi-metallic catalyst particles are made of a single solid solution of Pt and Pd atoms in the whole range of relative concentrations. Relative concentrations of these metals in the samples under study were determined by using energy dispersive X-ray spectrometry and their values were found to be close to the stochiometric relative concentrations in weight of the metals in the precursor aqueous solution. An average size of about 96 Å was estimated for the bi-metallic particles from the full-width at half-maximum value measured for the (2 0 0) diffractometric curve.  相似文献   

19.
Anant Mathur  Jonah Erlebacher   《Surface science》2008,602(17):2863-2875
The growth of thin (1–10 nm) films of Pt on Au(1 1 1) was studied in order to understand and clarify differences in growth mode observed in ultra-high vacuum (UHV) studies and in electrochemical deposition studies. It was found that on flat Au(1 1 1), Pt grows in a layer-by-layer growth mode, but if the gold substrate is exposed to an acidic environment prior to Pt deposition, then the substrate becomes nanoscopically rough (islanded) and Pt growth follows a pseudo-Stranski–Krastanov (SK) growth mode in which an initially thin wetting layer becomes rougher with increasing film thickness. An analysis of curvature effects on epitaxial growth mode shows that thermodynamic curvature effects involving surface stress are negligible for the Pt/Au(1 1 1) system. Rather, the apparent SK growth is linked to kinetic effects associated with inhomogeneous in-plane elastic relaxation of Pt films on rough surfaces that drive Pt atoms from pits to the tops of islands in the early stages of growth. Implications for the control of epitaxial film roughness are discussed.  相似文献   

20.
This study presents the effect of the metal–support interaction in two systems: (1) iron particle, and (2) platinum particles, being supported on magnesium oxide (MgO) nanopowder in alcohol-CVD process for carbon nanotubes (CNTs) growth. The employment of the different metals but the same substrate (with equal molar ratio) resulted in the synthesis of single-walled CNTs (SWCNTs) or double-walled CNTs (DWCNTs), using iron and platinum, respectively. Furthermore, along with the prolongation of the process time, the decrease of the mean nanotubes diameter in case of iron-catalyzed materials was detected. Interestingly, the extention of the growth time in the synthesis using Pt/MgO resulted in the synthesis of the thicker mean nanotubes diameter. However, for both applied catalytic systems the reduction of the diameter distribution of the tubes and the increase of relative purity of the samples upon the growth time increase were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号