首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Density functional theory is used to study oxygen adsorption and its effect on surface segregation in (2 1 1) surfaces of Pt(shell)/M(core) and Pt3M (M = Co, Ir) alloys. It is found that the most energetically favorable oxygen adsorption site is the bridge site over and parallel to the (1 0 0) step. Surface segregation phenomena is observed in Pt3Co, Pt3Ir and Pt/Co(core) systems. The Pt/Ir(core) structure was the only one, among the studied systems, that showed antisegregation behavior even in presence of oxygen adsorbed.  相似文献   

2.
Using the morphological differences of low and high index surfaces as templates for metal growth, several low dimensional overlayer structures with novel structural and electronic properties can be formed. We present here a first report on submonolayer adsorption and residual thermal desorption studies of In adatoms on reconstructed high index Si (5 5 12)?2 × 1 surface and compare it with the observations on planar Si (111)?7 × 7 surface. The study is done by using in-situ Ultra High Vacuum surface sensitive probes like Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These conventional wide area techniques provide an understanding of atomistic issues involved in the evolution of the interface. We have observed an anomalous growth mode during adsorption at room temperature (RT) above 2ML, which includes adatom layering and clustering on Si (111) surface. This is also manifested during the desorption experiments on both surfaces, and the subtle differences on the two surfaces are discussed. The observation of LEED pattern during the adsorption process shows formation of different superstructural phases on Si (111)?7 × 7 surface. On Si (5 5 12) 2 × 1 surface we observe the sequential 2× (225), 2× (337) and 2× (113) facet formation during adsorption/desorption, which include quasi 1D-nanowire/chain structures. A combination of lattice strain effects, presence of step-edge barrier and quantum size effects are employed to speculate the differences in adsorption and desorption.  相似文献   

3.
J. Haubrich  C. Becker  K. Wandelt 《Surface science》2009,603(10-12):1476-1485
We present a detailed analysis of the electronic and geometric bonding properties of the model alkene ethene on different mono- and bimetallic surfaces to establish the difference between adsorption energy and interaction energy and to elucidate the chemical character of a single platinum atom in different chemical environments. The adsorption of ethene on Pt(1 1 1) at 100 K leads to two adsorption states, which are commonly described as being of di-σ-type (bidentate, μ2η2) and π-type (monodentate, μ1η2). While the later is the minority species on Pt(1 1 1) it is of larger abundance on the platinum alloys. We have chosen π-bonded ethene for our study since it can be found on Pt(1 1 1), the Pt3Sn and Pt2Sn surface alloys, and Cu3Pt(1 1 1). Density functional theory calculations of the adsorption structures, site and decomposed densities of states, as well as partial charge densities in conjunction with vibrational spectroscopy show that the bonding, i.e. the interaction energy, of the π ethene is only weakly influenced by alloying. Even in a copper matrix – as in the case of Cu3Pt(1 1 1) – the bonding platinum atom essentially keeps its chemical identity and the interaction energy is reduced by only 14% compared to Pt(1 1 1). This observation suggests that bonding on surfaces is a strongly localized phenomenon. However, the adsorption energy decreases significantly due to alloying, which is attributed to the varying local relaxation of the different metal surfaces.  相似文献   

4.
We have used density functional theory method to calculate the Pt surface segregation energy in the Pt3Ni (111) surface doped with a third transition metal M and thus investigated the influence of component M on the extent of Pt segregation to the outermost layer of these Pt3Ni/M (111) surface. As a third component in the Pt3Ni/M (111) surface, V, Fe, Co, Mo, Tc, Ru, W, Re, Os, and Ir were predicted to lead to even more negative Pt surface segregation energies than that in the based Pt3Ni (111) surface; Ti, Cr, Mn, Cu, Zr, Nb, Rh, Hf, and Ta would still retain the preference of Pt segregation to the surface but with less extent than the replaced Ni, while Pd, Ag, and Au would completely suppress the Pt segregation to the Pt3Ni/M (111) surfaces. Furthermore, we examined the relation between the Pt surface segregation energy in the Pt3Ni/M (111) surfaces and the material properties (lattice parameter, heat of solution, and Pt surface segregation energy) of binary alloys Pt3M. It was found that the surface energy effect, strain effect, and heat of solution effect induced by the doped element M would collectively affect the Pt surface segregation energy in the Pt3Ni/M (111) surfaces.  相似文献   

5.
Yinghui Zhou  Jing Zhou 《Surface science》2012,606(7-8):749-753
Low coverage of Ti was deposited on the well-ordered CeOx(111) (1.5 < x < 2) thin films grown on Ru(0001) by physical vapor deposition at room temperature. The structure and interaction of Ti/ceria interfaces were investigated with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) techniques under ultrahigh vacuum conditions. XPS data indicate that the deposition of Ti on both oxidized and reduced ceria surfaces causes the partial reduction of Ce from + 4 to + 3 state. Ti is formally in the + 4 state. STM data show the formation of small atomic-like titania features at 300 K, which coalesce to form chain structures upon heating. It is demonstrated in the study that the deposition of Ti can form mixed metal oxides at the interface and modify both electronic and structural properties of the ceria support. The structural study of Ti/ceria interfaces can be a key for understanding the higher catalytic activity of the Ti–CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

6.
The adsorption structure of nitric oxide (NO) on Ir(111) was studied by thermal desorption spectroscopy (TDS) and dynamical analyses of low-energy electron diffraction (LEED). At the saturation coverage at about 100 K, a 2 × 2 pattern was observed by LEED and two peaks appeared at 365 and 415 K in TDS. No change in the LEED IV curves was observed by annealing at 280 K, which means that the NO-saturated surface was retained at this temperature. On the contrary, partial desorption and changes of the LEED IV curves were observed by annealing at 360 K. Combined with previous vibrational studies, it is suggested that one adsorption species is not affected, while another species is partially desorbed and the rest of them are dissociated by annealing at 360 K. Dynamical analyses of LEED were performed for the 280 K-annealed and the 360 K-annealed surfaces, which correspond to the NO-saturated and the NO-dissociated Ir(111) surfaces, respectively. These revealed that NO occupies the atop, fcc-hollow and hcp-hollow sites (atop-NO + fcc-NO + hcp-NO) for the NO-saturated Ir(111) surface with the saturation coverage of 0.75 ML. For the 360 K-annealed surface, the atop-NO is not affected but the fcc-NO and the hcp-NO are partially desorbed as NO and partially dissociated to N and O, both of which occupy the fcc-hollow site on the surface.  相似文献   

7.
The morphology of TiO2(110)-(1 × 1) supported Cu particles has been investigated by Fourier Transform Reflection Absorption Infrared Spectroscopy (FT-RAIRS), employing adsorbed CO as a probe molecule sensitive to local surface structure. For Cu coverage (deposited at 300 K) less than 2.85 MLE nucleated Cu particles in the range 2 nm–4 nm are formed, as indicated by a final state shift in the core level Cu(2p3/2) binding energy and by the existence of only transmission bands in the FT-RAIRS spectra for adsorbed CO. νS(CO) indicates that these small particles expose sites similar to those of the stepped Cu surfaces Cu(211), Cu(311), and Cu(755). At Cu coverages in the range of 6 MLE and above, corresponding to particle sizes above 4.6 nm, νS(CO) indicates the predominance of (110), (100) and (111) adsorption sites. Annealing the Cu layers to 650 K results in the slight growth of the particle sizes, and transformation of the CO adsorption sites corresponding to the close packed facets. The transformation of the local dielectric from that of titania to that dominated by the Cu particle is shown to take place between 3.7 and 4.2 nm, and this change is also to a smaller extent sensitive to the dispersion of the particles.  相似文献   

8.
We present here a study of the interaction of triruthenium dodecacarbonyl Ru3(CO)12 with gold surfaces using time-evolved and temperature-programmed infrared reflection absorption spectroscopy (IRAS) and STM. Ru3(CO)12 exhibits drastically different adsorption/desorption behavior on high-index surfaces of gold in comparison to the smooth Au(111) surface. On the smooth Au(111) surface, the adsorption of Ru3(CO)12 at 200 K is observed to be molecular and reversible with the molecule's Ru3-plane oriented essentially perpendicular to the surface in the first and second layer. In the multilayer (> 3 ML), the molecule is oriented parallel (or moderately inclined) to the surface. On high-index gold surfaces, prepared by partial annealing of rough gold films, the molecules dissociate. Vibrational spectra reveal dissociation of carbonyl to Ru and CO at elevated temperature (> 250 K) with the formation of CO covered Ru-islands and the subsequent desorption of CO from Ru-islands. Increasing amounts of CO observed with increasing surface roughness demonstrate that the rate of Ru3(CO)12 dissociation is related directly to the surface roughness of the gold surface. STM images reveal at low coverage the formation of 2-D islands of carbonyl fragments with lateral sizes of 1 to 1.5 nm and at higher coverage the formation of larger 3-D islands of 1 to 3 layers and lateral sizes above 10 nm.  相似文献   

9.
Michael A. Henderson 《Surface science》2010,604(17-18):1502-1508
The chemistry of Cr(CO)6 on the Fe3O4(111) surface termination of α-Fe2O3(0001) was explored using temperature programmed desorption (TPD), Auger electron spectroscopy (AES), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED) both with and without activation from an oxygen plasma source. No thermal decomposition of Cr(CO)6 was detected on the surface in the absence of O2 plasma treatment, with first layer molecules desorbing in TPD at 215 K from a close-packed overlayer. The interaction of first layer Cr(CO)6 with the Fe3O4(111)-termination was weak, desorbing only ~ 30 K above the leading edge of the multilayer state. Activation of multilayer coverages of Cr(CO)6 with the O2 plasma source at 100 K resulted in complete conversion of the outer Cr(CO)6 layers, presumably to a disordered Cr oxide film, with Cr(CO)6 molecules near the surface left unaffected. Absence of CO or CO2 desorption states suggests that all carbonyl ligands are liberated for each Cr(CO)6 molecule activated by the plasma. AES and SSIMS both show that O2 plasma activation of Cr(CO)6 results in a carbon-free surface (after desorption of unreacted Cr(CO)6). LEED, however, shows that the Cr oxide film was disordered at 600 K and likely O-terminated based on subsequent water TPD. Attempts to order the film at temperatures above 650 K resulted in dissolution of Cr into the α-Fe2O3(0001) crystal based on SSIMS, an observation linked to the Fe3O4(111) termination of the surface and not to the properties of α-Cr2O3/α-Fe2O3 corundum interface. Nevertheless, this study shows that O2 plasma activation of Cr(CO)6 is an effective means of depositing Cr oxide films on surfaces without accompanying carbon contamination.  相似文献   

10.
The structural and chemical characterization of Rh, Mo and Rh–Mo nanosized clusters formed by physical vapor deposition on TiO2 single crystal was performed by Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS) and Reflection Absorption Infrared Spectroscopy (RAIRS), applying CO as test molecule. On a slightly reduced titania surface 2D-like growth of Rh was revealed at 300 K up to 0.23 ML coverage by AES and CO-desorption experiments. For CO-saturated Rh particles TDS showed molecular CO desorption in a broad temperature range with Tp = 400, 440, 490 and 540 K (α-states), the latter state appearing only on the smallest Rh particles. The population of γ-state (Tp = 780–820 K) originating from the recombination of C and O atoms on the support began at ΘRh = 0.23ML and was maximized at around 1–2 ML Rh coverage, corresponding to 30% dissociation of CO. A possible dissociation precursor on Rh particles is identified as linearly bonded CO on step sites characterized by ν(C–O) of 2017 cm? 1. Deliberation of CO2 could not be detected between 170 and 900 K, showing the absence of disproportionation reaction. Instead of oxidizing CO molecules, oxygen atoms stemming from the dissociation of CO attached to the reduced centers of titania, indicating the role of adsorption sites at the perimeter of Rh particles in the decomposition process. 2 ML of predeposited Mo enhanced markedly the dispersion of Rh particles as a result of strong Rh–Mo interaction, but it slightly reduced the molecular α-CO desorption possibly due to enhanced dissociation. The formation of γ-CO was suppressed considerably through elimination of adsorption centers by Mo on the TiO2 substrate. The reactivity of Rh layers deposited on Mo-covered surface towards CO was reduced after repeated annealing to 600 K due to partial encapsulation of Rh by titania, manifesting in the suppression of the more strongly bonded α-state. Mo-deposits (up to 0.5ML) on Rh particles decreased the saturation coverage of α-CO through a site-blocking mechanism without detectable influence on the binding energy of CO to Rh, indicating Mo island formation. The carbon arising from the decomposition of CO dissolved in the Mo-containing particles formed a solid solution stable even at 900 K, suggesting a possible role of molybdenum carbide regarding the enhanced catalytic activity of Rh clusters.  相似文献   

11.
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2 × 1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ± 22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by ? 4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (< 10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.  相似文献   

12.
The adsorption and desorption of the system CO/Pt(111) and C6H6/Pt(111) at 300 K has been investigated with a pulsed molecular beam method in combination with a microcalorimeter. For benzene the sticking probability has been measured in dependence of the coverage θ. For coverages θ > 0.8 transient adsorption is observed. From an analysis of the time-dependence of the molecular beam pulses the rate constant for desorption is determined to be 5.6 s? 1. With a precursor-mediated kinetic adsorption model this allows to obtain also the hopping rate constant of 95.5 s? 1. The measured adsorption enthalpies could be best described by (199 ? 77θ ? 51θ2) kJ/mol, in good agreement with the literature values. For CO on Pt(111) also transient adsorption has been observed for θ > 0.95 at 300 K. The kinetic analysis yields rate constants for desorption and hopping of 20 s?1 and 51 s?1, respectively. The heats of adsorption show a linear dependence on coverage (131 ? 38θ) kJ/mol between 0  θ  0.3, which is consistent with the desorption data from the literature. For higher coverage (up to θ = 0.9ML) a slope of ?63 kJ/mol describes the decrease of the differential heat of adsorption best. This result is only compatible with desorption experiments, if the pre-exponential factor decreases strongly at higher coverage. We found good agreement with recent quantum chemical calculations made for (θ = 0.5ML).  相似文献   

13.
Mixed Fe–Mo oxides are used in industrial catalytic processes of selective oxidation of methanol to formaldehyde. For better understanding of the structure-reactivity relationships of these catalysts we aim to prepare well-ordered iron–molybdate thin films as model catalysts. Here we have studied Mo deposition onto Fe3O4 (111) thin films produced on Pt(111) as a function of Mo coverage and annealing temperature using LEED, AES, STM and IRAS. At low temperatures, the iron oxide film is covered by Mo = O terminated molybdena nanoparticles. Upon oxidation at elevated temperatures (T > 900 K), Mo species migrate into the film and form new bonds with oxygen in the film. The resulting films maintain the crystal structure of Fe3O4, and the surface undergoes a (√3 × √3)R30° reconstruction. The structure is rationalized in terms of Fe substitution by Mo in the surface layers.  相似文献   

14.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

15.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

16.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

17.
Reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS) have been used to study the adsorption of oxygen on the (100) and (111) surfaces of lanthanum hexaboride. Exposure of the surface at temperatures of 95 K and above to O2 produces atomic oxygen on the surface and yields vibrational peaks in good agreement with those observed in previous HREELS studies. On the La-terminated (100) surface, RAIRS peaks correspond to vibrations of the boron lattice that gain intensity due to a decrease in screening of surface dipoles that accompanies oxygen adsorption. A sharp peak at ~ 734 cm?1 in the HREEL spectrum shows isotopic splitting with RAIRS into two components at 717 and 740 cm?1 with full widths at half maxima of only 12 cm?1. The sharpness of this mode is consistent with its interpretation as a surface phonon that is well separated from both the bulk phonons and other surface phonons of LaB6. On the boron-terminated LaB6(111) surface, broad and weak features are assigned to both vibrations of the boron lattice and of boron oxide. On the (100) surface, oxygen blocks the adsorption sites for CO, and adsorbed CO prevents the dissociative adsorption of O2.  相似文献   

18.
A study is made by TEM, XRD and by measuring electrical/magnetic properties, of growth mode and properties of Pt1−xNix alloy films deposited on MgO(0 0 1) at 250°C by dc-sputtering at 2.5–2.7 kV in Ar. A bias voltage Vs≤−160 V was applied to the substrate during deposition. It was confirmed that the Pt film was polycrystalline with the texture of Pt(1 1 1)/MgO(0 0 1) while the films of Pt0.14Ni0.86 and Pt0.19Ni0.81 were epitaxially grown with Pt–Ni(0 0 1)[1 0 0]/MgO(0 0 1)[1 0 0] similarly to the case of Ni/MgO(0 0 1). Thus the growth mode transformation between Pt–Ni(1 1 1)/MgO(0 0 1) and Pt–Ni(0 0 1)/MgO(0 0 1) may be induced at x less than 0.81 for Pt1−xNix alloy films. The temperature coefficient of resistance TCR from 100 to 300 K of Pt0.14Ni0.86 films was estimated to be 0.0044–0.0053 K−1 and saturation magnetization at 300 K to be 1.7–3.2 kG, respectively, while TCR of Pt films was estimated to be 0.0035–0.0048 K−1.  相似文献   

19.
In this paper we review the preparation and reaction properties of ordered SmRh surface alloys and SmOx/Rh(1 0 0) model catalyst which have been systematically investigated by low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and temperature desorption spectroscopy (TDS). The growth of Sm on Rh(1 0 0) at room temperature follows the Stranski-Krastanov mode. Thermal treatment of the Sm films on Rh(1 0 0) leads to the formation of ordered SmRh surface alloys. An “inverse” SmOx/Rh(1 0 0) model catalyst is produced under controlled oxidation of the SmRh surface alloy. CO adsorption on the SmRh alloy and SmOx/Rh(1 0 0) surfaces gives rise to five TDS characteristic features originating from different adsorption sites. Both the site blocking of SmOx and the electron transfer between SmOx and Rh substrate significantly affect the CO adsorption. Acetate decomposition on both Rh(1 0 0) and the SmOx/Rh(1 0 0) surfaces are found to undergo two competitive pathways that yields either (i) CO(a) and O(a) or (ii) CO2(g) and H2(g) at high temperature. The reactive desorption of acetic acid on SmOx/Rh(1 0 0) is dramatically different from that on Rh(1 0 0). A rapid decomposition of acetic acid to produce CO(g) and CO2(g) can be observed only on SmOx/Rh(1 0 0), where CO(g) becomes the predominant product at 225 K, indicating a strong promotional effect of SmOx in the selective decomposition of acetate. Finally, we briefly describe the future outlook of research on rare earth oxide/metal model catalysts.  相似文献   

20.
A. Hofmann  C. Pettenkofer 《Surface science》2012,606(15-16):1180-1186
CuInSe2(112) films were grown on GaAs(111)A substrates by molecular beam epitaxy. The resulting surface stoichiometry was deduced by consideration of results from various surface analytic techniques. The obtainable Cu/In stoichiometry range in XPS was 0.4–1.2, where 1.2 marks the onset of Cu2 ? xSe phase segregation at the surface and 0.4 corresponds to the copper-depleted surface with ordered defect compound (ODC) composition. For the stoichiometric CuInSe2(112) surface, a c(4 × 2) reconstruction of the zinc blende surface periodicity is observed in the LEED pattern, with three rotational domains present on the flat GaAs(111) substrate. With the use of stepped (111) substrates, domain formation could be suppressed. By comparison of the LEED data and concentration depth profiles from angle-resolved XPS, two types of surface reconstructions could be distinguished. According to surface energy calculations in the literature, these correspond to surfaces stabilized by either CuIn or 2VCu defects. The surface of copper-poor CuIn3Se5 shows no reconstruction of the zinc blende order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号