首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium oxide-doped hematite xIn2O3*(1-x)??-Fe2O3 (molar concentration x = 0.1?C0.7) solid solutions were synthesized using mechanochemical activation by ball milling. XRD patterns yield the dependence of lattice parameters and grain size as function of milling time. After 12 h of milling, the completion of In3?+? substitution of Fe3?+? in hematite lattice occurs for x = 0.1. For x = 0.3, 0.5 and 0.7, the substitutions between In3?+? and Fe3?+? into hematite and respectively, In2O3 lattices occur simultaneously. The lattice parameters of ??-Fe2O3 (a and c) and In2O3 (a) vary with milling time. For x = 0.1, Mössbauer spectra were fitted with one, two, or three sextets versus milling time, corresponding to gradual substitution of In3?+? for Fe3?+? in hematite lattice. For x = 0.3, Mössbauer spectra after milling were fitted with three sextets and two quadrupole-split doublets, representing In3?+? substitution of Fe3?+? in hematite lattice and Fe3?+? substitution of In3?+? in two different sites of In2O3 lattice. For x = 0.5 and 0.7, Mössbauer spectra fitting required two sextets and one quadrupole-split doublet, representing coexistence of In3?+? substitution of Fe3?+? in hematite lattice and Fe3?+? substitution of In3?+? in indium oxide lattice. The recoilless fraction studied versus milling time for each molar concentration exhibited low values, consistent with the occurrence of nanoparticles in the system. SEM/EDS measurements revealed that the mechanochemical activation by ball milling produced xIn2O3*(1-x)??-Fe2O3 solid solution system with a wide range of particle size distribution, from nanometer to micrometer, but with a uniform distribution of Fe, In, and O elements.  相似文献   

2.
Martian regolith and Earth’s basaltoid samples have been investigated by means of Mössbauer spectroscopy. The identification of the same minerals: olivine, pyroxene, magnetite, hematite and confrontation of the Fe3?+?/Fe2?+?, Fe3?+?/Fetot, Fe2?+?/Fetot ratios are presented. Co-existence of olivine and hematite in Martian regolith, absent in presented by authors terrestrial samples has been tentatively explained.  相似文献   

3.
57Fe doped titanium oxide monocrystals, prepared by ion implantation at different temperatures and subsequent thermal treatment, were characterized by conversion electron Mössbauer spectrometry, synchrotron radiation x-ray diffraction and superconducting quantum interference device magnetometry. After implantation at room temperature Fe is present in divalent state. Upon annealing in high vacuum Fe2?+? is reduced to metallic Fe for the most part. After implantation at 623 K most iron is in metallic state. During annealing on air Fe is gradually oxidized from Fe2?+? to Fe3?+?. Depending on preparation conditions and thermal treatment the role of different nanosized secondary phases is discussed in terms of their influence on the magnetic properties of Fe:TiO2. α-Fe nanoparticles are found to be responsible for ferromagnetism observed in TiO2.  相似文献   

4.
The Fe oxidation degree determined by 57Fe Mössbauer spectroscopy and microprobe was used to characterize fresh and altered phlogopite megacrysts from an evolved carbonatitic kimberlite from northeastern Oman. The Quadrupole splitting (QS) varies between 2.19 and 2.48 mm/s (Fe2?+?) in the fresh phlogopite samples and between 2.40 and 2.47 mm/s in the altered phlogopite samples. The quadrupole splitting of the Fe3?+? doublets varies between 0.66 and 0.85 mm/s in the fresh samples. The altered phlogopite samples show three Fe3?+? doublets; the first show a quadrupole splitting between 0.97 and 1.13, the second quadrupole splitting varies between 0.24 and 0.46 mm/s and the third varies between ??0.23 and ??0.35 mm/s. The phlogopite was observed to have an average Fe3?+?/Fetotal of 35% to 37%, and corresponds to fresh phlogopite. The second one results from the alteration of the first type, and the Fe3?+?/Fetotal ranges between 40% and 57%. Tetrahedral Fe3?+? ions were confirmed in the altered phlogopite samples. Quantitative Fe site distributions can be obtained from room-temperature Mössbauer data if the different recoilless factors for octahedral Fe2?+? and tetrahedral Fe3?+? are considered. The observed isomer shifts are consistent with Mössbauer temperatures of 330 K, reported in the literature for tetrahedral and octahedral Fe3?+? and Fe2?+? in phlogopite. The results are compared to those obtained for natural and synthetic phlogopite from worldwide.  相似文献   

5.
We would like to introduce, the study of two different colour “sillar” samples: white and pink, belonging to the Añashuayco quarry in the Arequipa Region (Peru). The X-ray diffraction (XRD) analysis indicates the presence of several mineralogical phases, such as feldpars and biotite for the both white and pink “sillar” whereas cristobalite and quartz are detected only in the first sample and amorphous phase in the second one. In room temperature, Mössbauer spectroscopy, the presence of hematite (α-Fe2O3) was detected as the main phase for both samples, this was not detected in the XRD measurements. Moreover, corresponding doublets in the Mössbauer spectra indicate the presence of iron in the aluminium-silicate minerals. The rates Fe2?+?/Fe3?+? are 0.0752 and 0.0526 to the white and pink samples respectively. The minerals composing the white tuff form a heterogeneous aggregate of uniform aspect. Mining of these materials generates a great amount of waste in the form of lumps of varying size and which are raw materials studied in the present work for potential application in the ceramic field.  相似文献   

6.
We report studies about the phase transformations in the soil of the Carancas meteoritic crater located in an inhabited area near the town of Carancas, in the Region of Puno, about 1,300 km southeast of Lima, Peru. The studies by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Mössbauer spectroscopy (at RT and 77 K) reveal that the sample consists mainly of quartz, albite and impactites such as coesite and stishovite (SiO2) that have experienced phase metamorphism or alterations, related to high pressures and temperatures, forming their corresponding polymorphs. The occurrence of these phases, with high content of SiO2, in the soil of the crater strengthens the hypothesis of its origin by metamorphism induced by impact; we observed also a magnetic sextet on the Mössbauer pattern, assigned to the Fe3?+? in hematite, and three paramagnetic doublets, two of them associated with structural Fe3?+? and Fe2?+? cations, respectively, in illite and/or montmorillonite, and a third one due to an unidentified Fe3?+? site.  相似文献   

7.
High-temperature in situ Mössbauer spectroscopy measurements (300–950°C) were done on synthetic olivine of composition (Mg0.55Fe0.45)2 SiO4 (=Fa45) in order to study the distribution of Fe2?+? over the M1 and M2 octahedral sites. The spectra are fit with two doublets, which are assigned to Fe2?+? at the M1 (smaller splitting) and M2 sites. The Fe2?+? site-occupancies at M1 and M2, obtained from the Mössbauer relative areas, suggest that Fe2?+? has a slight preference for the M1 site at temperatures below ~500°C, with a tendency of disordering around this temperature. At higher temperatures, Fe2?+? again prefers to occupy the M1 site, where it shows a considerable order at this site up to 750°C. At still higher temperatures, the spectra indicated partial reduction of the Fa-component into metallic iron and the resolution of the doublets was severely deteriorated.  相似文献   

8.
Using Mössbauer spectroscopy and measurement of hysteresis loops and thermomagnetic curves, phase composition and magnetic parameters of Fe3Si mechanically alloyed powders were studied in dependence on milling time and subsequent heat treatment at a thermomagnetic experiment. Samples of as-prepared powders show high value of coercivity, the saturation magnetization and the content of amorphous Fe3Si phase raise with increasing time of milling, the content of α-Fe diminishes. Heat treatment of samples with long enough milling time can produce almost perfect Fe3Si alloy.  相似文献   

9.
InSnFe mixed oxides were prepared by a sol–gel method, and were investigated by Mössbauer spectrometry and magnetization measurements. The magnetic relaxation peaks in addition to paramagnetic peaks were observed in Mössbauer spectra. Most of Fe3?+? species (D1) occupy 24d site of bixbyite structure, and the other Fe3?+? species (D2) occupy 8b site. The area intensity ratio of two doublets for sample with x?=?0.06 and y?=?0.06 was most perfectly consistent with the ratio of d/b site occupations (24/8); this sample showed the highest magnetization among these samples. Fired ash of In oxide (5%Fe), which showed ferromagnetism, consisted of γ Fe2O3 segregated oxides.  相似文献   

10.
A series of M-type barium hexaferrite has been synthesized in a glass melt by partially substituting the Fe2O3 with TiO2 for investigation of their structure. The glass melt has the basic composition (mol%): 40 BaO + 33 B2O3 + (27-x) Fe2O3 + x TiO2 with x =?0, 3.6, 5.4 and 7.2 mol% TiO2. The substituted ferrites were studied by means of X-ray diffraction, Mössbauer spectroscopy and vibration sample magnetometer. X-ray diffraction studies revealed that not all samples have a single ferritic phase, a small second phase corresponding to BaTi6O13 was also observed to form. The Mössbauer spectra changed from magnetically ordered (x =?0) to magnetically ordered with strong line broadening. Moreover, the broadening increases with TiO2 content. The Mössbauer parameters suggested that Ti4?+? occupies the 2a and 12k crystal sites, and the Ti4?+? substitution on the 2b and 4f2 site also occurs at high melt dopings. Therefore, coercivity and saturation magnetization decreased.  相似文献   

11.
Diluted Sn doped TiO2 nanocrystals (Sn/Ti ratio: x ≤ 1.37 %) were synthesized by a simple hydrothermal method using pure reagents without any surfactant and dispersant material. The XRD of these samples showed an anatase phase, anatase and rutile mixed phases, and a rutile phase of TiO2 and SnO2 with the increase of Sn dopant concentrations. 119Sn Mössbauer spectra gave the broad peaks, which were decomposed into doublets and sextets because almost all these samples showed magnetic hysteresis even at room temperature. The titanium oxides doped with x ≤ 0.12 % showed the relatively large magnetic hysteresis and high photocatalytic activity. Mössbauer spectra of samples doped with x > 0.3 % were analyzed by one doublet and two sextets although the samples showed weak ferromagnetism. Three kinds of Sn species may be distinguished as Sn 4+ substituted TiO2 and two different magnetic arrangements of Sn doped TiO2: one with more oxygen defects and other at the interface of TiO2 and precipitated SnO2 containing Ti atoms. The correlation between various amounts of Sn sites and photocatalytic activity and/ or magnetic property was discussed.  相似文献   

12.
Room temperature 57Fe Mössbauer spectroscopy has been used to investigate the structural and oxidation state of Fe in tektites from different strewn fields. Spectra have been analyzed in terms of two quadrupole splitting distributions corresponding to Fe3?+? and Fe2?+?. All tektites show similar distribution of quadrupole splitting. Each distribution has one peak. The Fe2?+? sites show a narrow region of Mössbauer line shift (δ) and quadrupole splitting (ε), δ?= 1.02–1.10 mm/s and ε?= 0.85–1.00 mm/s relative to α-Fe. These values have been assigned to intermediate coordination between tetrahedral and octahedral. The Fe3?+? sites show wider regions of hyperfine parameters: δ?= 0.25–0.45 mm/s and ε?= 0.65–0.90 mm/s. The Fe3?+?/Fe2?+? ratio was found to be 0.05–0.15.  相似文献   

13.
Mössbauer spectroscopy revealed that a central hyperfine interaction doublet and an additional sextet characterized the appearance of new phases in the mechanically alloyed Fe2O3–Al and Fe2O3–Co systems. In the Fe2O3–Al system, the intensity of the central super paramagnetic doublet which represents small particles of iron, increased with increasing milling time from 5 to 30 h of mechanical alloying. The magnetic sextet characterizing hematite vanished in the room temperature Mössbauer spectra of samples produced after 25 h of mechanically alloying the 50% Fe2O3 and 50% Al system. In general XRD peak broadening was observed as a result of extensive material structural distortion and formation of small particles. Fe, Al2O3 and mixed iron–aluminium oxide phases were identified in the XRD patterns with a small persistence of the iron oxide up to 20 h of mechanically alloying the 1:1 system Al–Fe2O3. In the 50% Co–50% Fe2O3 system, a 55% abundant new phase CoFe2O4 was observed, from the Mössbauer spectra of the system. The presence of this new phase was confirmed by the XRD analysis. The high energy ball milling of WC–Fe2O3 revealed a more effective grinding compared to hematite alone. The hematite particles were reduced to nanosized particles.  相似文献   

14.
Fe-doped TiO2 samples with different Fe content prepared by mechanical alloying have been investigated by means of Mössbauer spectroscopy at 300 and 4.2 K. The results indicate the coexistence of Fe2?+? and Fe3?+? ions in paramagnetic states at room temperatures in the rutile structure. All samples present magnetic order at 4.3 K. When the Fe concentration increases the Fe ions in the rutile matrix became closer giving the possibility of strong magnetic interactions between them. The temperature evolution of the magnetic order was followed for the 15 at.% of Fe sample. The Fe-doped oxide formed for this composition orders below 20 K reaching an almost totally magnetic ordered state at 4.3 K.  相似文献   

15.
In this work we report the magnetic and structural properties obtained by Mössbauer spectrometry, Vibrating Sample Magnetometer and X-ray diffraction of milled powders with initial composition Nd2(Fe100 ? x Nb x )14B with x = 0 and x = 4. The mixtures were ball milled for different times up to 240 h. Structural and microstructural parameters were derived from high statistics X-ray patterns and discussed as a function of milling time. The Mössbauer spectra of the samples were fitted by means of a sextet and an hyperfine field distribution, associated to a pure iron phase (α-Fe) and a disordered iron-based phase, respectively. The α-Fe grain size decreases from 50 nm for 6 h up to 5 nm for 240 h milling time. The Vibrating Sample Magnetometer results allow to conclude that these samples behave as soft ferromagnets.  相似文献   

16.
In this work we present the study of hematite (α-Fe2O3) nanostructures synthesized by the ball milling technique. The structural characterization and the crystallite size estimation have been carried out using the X-ray diffraction (XRD) technique. Data analyses indicate that the hematite phase (space group, R-3C) is preserved after the milling process. As the milling time is increased, a second phase (α-Fe) appears. The mean crystallite size shows a decreasing tendency as the milling time is increased. High-resolution transmission electron microscopy (HRTEM) images show the formation of grains composed of crystallites with irregular shapes. Mössbauer spectra of milled powders carried out at 297 and 77 K are well modeled with a histogram distribution of hyperfine fields. The presence of one additional sextet which corresponds to the ∝-Fe phase is also determined in agreement with XRD data analysis. Magnetic measurements suggest the suppression of the Morin transition in the milled samples and the absence of thermal relaxation effects in agreement with the Mössbauer spectroscopy results.  相似文献   

17.
Using diamond anvil cell, the57Fe Mössbauer spectra of pure iron foil and α-Fe2O3 powder under high pressure have been measured at room temperature.57Fe Mössbauer spectra of α-Fe were measured from 15 GPa to 45 GPa. Isomer shift value decreased and the quadrupole splitting slightly increased as the pressure increased.57Fe Mössbauer spectra of Fe2O3 under high pressure up to 72 GPa were observed. Above 52 GPa, the new lines appeared at the center portion of the spectrum corresponding to the new high pressure phase. The spectrum of new high pressure phase consisted of 6-line splitting and doublet, suggesting the existence of the two different kinds of iron states in it.  相似文献   

18.
A Mössbauer study of nano-TiO2 doped with Fe is presented. The samples are prepared by sol-gel method, doping Fe by 5, 10 and 15 wt.%, respectively, which are measured with XRD, TEM and Raman spectra. Especially, Mössbauer spectra are emphasized in this study. The anatase phase is major in both doped and no-doped sample. The α-Fe2O3 phase is also in the doped samples. The grain size of doped sample is in 5–20 nm range, the major grains are about 13 nm. And the grain size of no-doped sample is about 8 nm. Studying Mössbauer spectra and Raman spectra, we concluded that in the doping process the Fe3+ ions entered anatase lattice and substituted Ti4+ ions. However, the amount of Fe ions in the site is limited to about 1.5 wt.%. It does not increase as the doping Fe increase. The more Fe doped, the more α-Fe2O3 formed. For comparing conveniently, it also can be described as (Ti0.98Fe0.02)O2 by atomic percent.  相似文献   

19.
Mössbauer spectra of samples from the 2010 Fimmvörðuháls/Eyjafjallajökull eruption are presented with determinations of the Fe3?+?/FeTot ratios. Mössbauer spectra of time series of samples from the Eyjafjallajökull eruption show a change in the characteristics of the erupted material mid-way in the eruption, suggesting changing access of water to the eruption.  相似文献   

20.
The structure, phase and chemical compositions of surface layers in different depths of Fe-3%Si alloy were investigated. According to the X-ray Photoelectron Spectroscopy (XPS) spectrum (penetration depth of up to ∼ 1nm) of the as-prepared sample, a layer of SiO2 was present on the top. After the subsequent Ar+ sputtering (removing the SiO2 layer), a segregation of Si atoms and two other phases were observed. The phases were described as the cubic c-FeSi and Fe3Si. The emission57Fe M?ssbauer spectra confirmed a presence of these phases. The α-Fe and solid solution of α-Fe + 1wt.%Si were recognized in the Conversion Electron M?ssbauer spectra (penetration depth ∼ 300nm) while the M?ssbauer spectra taken in scattering geometry with detection of 14.4 keV gamma radiation (scanning depth of ∼ 30 μm) indicate Fe-3wt.%Si solid solution as a main phase. Presented at International Colloquium “M?ssbauer Spectroscopy in Materials Science”, Všemina, Czech Republic, June 1–4, 2004. This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Contract No. IAA1041404).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号