首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环氧树脂是电力设备中广泛应用的一种绝缘材料, 其介电性能受到分子链运动特性的影响. 本文制备了直径为50 mm、厚度为1 mm的环氧树脂试样, 采用差示扫描量热仪和宽频介电谱仪测试了环氧树脂的玻璃化转变温度和介电特性. 实验结果表明, 环氧树脂的玻璃化转变温度为105 ℃, 在玻璃化转变温度以上, 高频段出现了由分子链段运动造成的松弛过程, 低频段出现了由载流子在材料中迁移造成的直流电导过程. 发现环氧树脂不同尺寸分子链段的松弛时间不同, 其松弛时间分布较宽, 计算得到了分子链段在不同温度下的松弛时间分布特性. 分子链松弛峰频率和直流电导随温度的变化关系服从Vogel-Tammann-Fulcher公式. 拟合实验结果得到分子链松弛峰频率和直流电导的Vogel温度和强度系数. 由Vogel温度计算得到了与差示扫描量热测试结果一致的玻璃化转变温度, 约为102 ℃. 结果表明玻璃化转变温度以上环氧树脂的自由体积增大, 分子链段有足够的空间来响应外电场从而产生分子链松弛极化, 载流子有足够的能量在材料中迁移形成电导.  相似文献   

2.
聚合物共混物中链段的慢取向运动与其玻璃化转变行为和宏观力学性质密切关联,而基于化学位移各向异性重聚的~(13)C CODEX(centerband-only detection of exchange)固体核磁共振(SSNMR)技术能够有效表征共混物中链段的慢取向运动.该文利用~(13)C CODEX NMR技术详细研究了相容性聚合物共混物聚乙烯基苯酚/聚氧乙烯(PVPh/PEO)中的刚性组分PVPh在较宽温度范围内的慢取向运动特性与玻璃化转变过程的关联.研究表明,在玻璃化转变起始温度以下,PVPh主链的分子运动被冻结,而侧基存在b-松弛的慢取向运动;在玻璃化转变起始温度附近,PVPh主链具有明显的慢取向运动,而且主链和侧基是一种协同的分子运动.该文利用NMR技术揭示了共混物中的玻璃化转变起止温度分别对应于高分子主链慢取向运动CODEX信号的开始和极大值处的温度.  相似文献   

3.
用液氮淬火和热处理方法制得结晶度相差较大的铁电共聚物VDF(52)/TrFE(48)试样。介导弛豫研究提示室温以下共聚物的频率谱由低频和高频两部分组成。低频部由非晶区被冻结分子链段的微布郎运动贡献。符合WLF方程;高频部由晶区分子链段较小尺度的局域运动产生,遵从Arrhenius规律。分峰拟合结果得到共聚物的玻璃化转变温度为-24℃,局域弛豫活化能为46.1kJ/mol.  相似文献   

4.
邱文丰 《物理》1998,27(3):189-190
高分子相分离研究动态1高分子共混物超薄膜的相分离高分子是由简单的结构单元即单体连接而成的长链分子.单一的高分子材料有其独特的有用性能.不同高分子形成的共混物有可能结合各自的优异性能,但高分子共混物通常是不稳定的,两种不同的高聚物混合后倾向于相分离.这...  相似文献   

5.
晶型转变对尼龙11分子链运动的影响   总被引:2,自引:0,他引:2  
为进一步认识分子链运动与晶型之间的关系,用熔融、冰水淬火和退火等方法制备了α和δ′两种晶型的尼龙11薄膜试样.42Hz~5MHz的介电松弛谱显示了两种不同晶型试样的分子运动特征.不同频率下的介电温度谱显示α型结晶中代表分子链段运动的主松弛较δ′型结晶出现在更高温度,说明退火引起的δ′向α晶型转变使分子链段运动受到了限制.研究结果还显示,α和δ′型结晶中分子链局域松弛运动的活化能基本相同,但α型的松弛时间较δ′型的大,松弛强度则较δ′型的小,表明晶型转变使尼龙11的分子链局域松弛运动也受到了一定程度的抑制.  相似文献   

6.
非晶态玻璃态高分子材料作为结构材料在工程领域应用广泛,其机械力学性能特别是屈服变形行为受到热处理、加载应变率和环境温度的影响.采用分子动力学模拟方法研究非晶态玻璃态高分子材料不同工况下的单轴拉伸变形,基于分子链缠结微结构的概念,阐明了非晶态玻璃态高分子材料屈服和应变软化过程的内在变形机制.结果表明,拓扑缠结具有较为稳定的空间结构,难以发生解缠,决定了非晶态高分子材料屈服后的软化平台.由相邻分子链的局部链段相互作用形成的次级缠结在一定外界条件下可发生破坏或重新生成,次级缠结微结构及其演化是非晶态高分子材料发生屈服及软化的内在物理原因.  相似文献   

7.
用自旋标记方法将氮氧自由基连接在聚乙二醇分子末端,研究了聚乙二醇/聚乙烯吡咯烷酮合金体系的链段运动.测得了体系在不同温度时的ESR谱,混合体系的ESR谱图由快运动和慢运动两部分组成,且两组分相对比例随着温度变化发生变化,表明混合体系中氮氧自由基处于不同的环境中.根据谱图参数计算得体系中快运动部分的旋转相关时间τc在10-9~10-11s之间,并由2AZZ′获得了体系的T5mT. 结果表明由于体系中聚乙二醇和聚乙烯吡咯烷酮异种分子间的相互作用,体系中高分子链运动发生了变化.  相似文献   

8.
段芳莉  颜世铛 《计算物理》2012,29(5):759-765
采用粗粒化聚乙烯醇模型,应用分子动力学方法模拟熔融态聚合物经过缓慢冷却、局部结晶形成半晶态聚合物的过程.静态结构因子的演变显示出在结晶初期小角散射强度的增大先于布拉格峰的出现,这与小角/大角X射线散射实验现象相一致.模拟得到的半晶态聚合物呈现为折叠链构成的晶区与非晶区交杂在一起的结构形态,与缨状微束结构模型相一致.研究发现在不同的冷却阶段具有不同的有序结构形成机制.从结晶温度到玻璃化温度的凝固过程中,存在分子链的伸展和伸直分子链之间平行排列两种形式的结构转变;而在玻璃化温度之后,材料的活性只允许调整伸直分子链之间的相对排列位置.  相似文献   

9.
《物理》2016,(2)
正避免过冷液体晶化的快速冷却是制备玻璃最简单方法。没有晶化,深过冷液体中组成粒子运动会随降温而迅速减缓。利用这种粘度急剧增加,冷却中的玻璃材料得以加工成型。许多材料的玻璃化是十分容易的,每分钟几度的降温足以避免晶化。简单金属或高对称分子等材料的玻璃化则不然,有时高达109K/s的冷速仍无法避免晶化。尽管玻璃化如此不同,玻璃形成过程却是普适的:随着温度的降低,过冷液体组成粒子重排所需时间延长,经过玻璃转变温度Tg后,液体停止流动从而转变成刚性固体—玻璃。值得  相似文献   

10.
高分子链在纳米管道内的静态和动态特性与许多生物技术和生命过程相关.采用Monte Carlo方法模拟研究了两嵌段高分子链(ANABNB)在周期管道内的扩散过程.管道由长度相等的α和β两部分周期排列而成,其中α部分与高分子链A嵌段间存在吸引相互作用,而其他情形均为纯排斥作用.模拟结果表明,高分子链的扩散过程显著依赖于A嵌段长度,且扩散系数随A嵌段长度呈周期变化.通过对链与管道间的吸引作用能图像分析发现,在扩散系数峰位置,A嵌段的投影长度为管道周期长度的整数倍,同时高分子链的扩散规律与均质链在均质管道内的扩散规律一致;在扩散系数谷附近,A嵌段的投影长度为管道周期长度的半整数倍,同时扩散过程存在一系列明显的受限阶段,高分子链在不同的受限位置间跳跃转移.研究结果有助于嵌段高分子链的序列分离和可控输运.  相似文献   

11.
时温等效原理表明固定频率下温度越高,模量越低,而相同温度下频率越低,模量越低,即升高温度与降低频率具有同等效应。根据这一规律,可将聚合物的力学性能随温度的变化转化为这些性能随频率的变化,从而可通过不同温度下的力学性能测试数据,换算成宽频率范围内的材料力学性能表现。为了研究压力作用下橡胶阻尼性能的基本变化规律,通过自由体积理论推导出加压后的修正WLF方程,采用动态热机械分析实验,测试得到丁腈橡胶在不同温度下的损耗因子tanδ对频率ω的曲线,根据计算得到不同压力下的测试温度至室温的平移因子,便可做出加压后的丁腈橡胶的损耗因子-频率谱的主拟合曲线,其曲线的频率跨度达10个数量级以上。结果表明,丁腈橡胶的tanδ测试段在高于参考温度以后出现,而随着压力的增加,玻璃化温度相应升高,峰值往高频移动达1.5个数量级。此结果为研究压力作用下橡胶材料阻尼性能的定量变化提供了理论依据。  相似文献   

12.
针对太赫兹技术在材料特征识别和探测领域的潜在应用以及高分子材料在太赫兹波段的指纹特征,利用太赫兹时域光谱技术开展了PA66高分子材料在太赫兹波段的吸收光谱以及折射率、介电常数等光学参数的实验与理论分析研究。得到了PA66的太赫兹波段的光谱特征及吸收特征峰。并利用密度泛函理论开展了PA66在0.1~10 THz范围内的分子振动频率的计算工作,对比了理论计算数据和实验测试数据,并进行了太赫兹光谱特征吸收峰的归属指认。结果表明,计算的PA66分子振动频率与太赫兹实验光谱具有较高的一致性,并且太赫兹吸收光谱中的特征峰是分子中各基团的振动与太赫兹波频率的共振响应。通过分析基团的振动模式,对太赫兹光谱吸收特征峰归属进行指认:PA66材料在0.2~2.3 THz频段内多个特征峰主要由主链上酰胺基中C=O,—NH基团的摆动以及大骨架C链中的—CH_2非对称性振动产生。其中, 0.77 THz处的特征峰归因于分子内强烈的C=O和N—H的面外摆动, 1.56 THz处特征峰包含C=O的面外摆动和C链上CH_2的扭动,而1.85 THz处特征峰主要归因于来自单体己二酸中CH_2和C=O键的面外摇摆。中心频率约为4.57 THz处的特征峰,包含了C=O的面间摆动和来自单体己二胺中CH_2的强烈扭动。7.6 THz频率的吸收峰主要由C=O的摆动和—CH_2,—NH的剪切振动产生。研究结果表明,高分子材料对太赫兹波的吸收与分子中各基团的振动模式密切相关,并且在太赫兹波段的振动吸收峰一般由主链和支链中各种官能团的摇摆振动、扭曲振动以及分子间的相互作用而产生,进而推论出非对称性、含N、 O等元素官能团的极性高分子材料,电负性的差异致使分子振动偶极矩较大,在太赫兹波段容易产生指纹特征峰。为利用太赫兹技术进行材料的结构分析和识别检测提供理论基础和技术支撑。  相似文献   

13.
对聚丙烯酸酯的定量构性关系(QSPR)研究具有重要意义。采用分子电性作用失量(MEIV)表征聚丙烯酸酯的分子结构,运用多元线性回归(MLR)建立定量结构玻璃化转移温度相关(QSPR)模型,同时采用逐步回归结合统计检测筛选模型变量,建立了22个聚丙烯酸酯玻璃化转移温度(Tg)与其结构间的多元线性回归方程。另外采用内部及外部双重验证的办法深入分析和检验模型的稳定性。建模的复相关系数(Rcum)、留一法(LOO)交互校验复相关系数(Qcum)和外部样本校验复相关系数(Qext)分别为0.982、0.971和0.922。表明用MEIV对聚丙烯酸酯分子结构信息表达较好,所建QSPR模型的稳定性和预测能力良好。  相似文献   

14.
用1D和2D NMR技术归属了聚酰胺66的1H和13C的NMR共振信号,并通过聚酰胺66溶液温度和浓度改变对氢核弛豫时间的影响,得到了其分子运动信息.结果表明随着温度的升高,聚酰胺66链间氢键逐渐解离,大分子链间相互作用逐渐减弱.而解离出来的链段又与溶剂小分子可以形成新的氢键,使聚酰胺66链卷曲并包含着部分溶剂分子一起运动.随着溶液浓度的增大,由于分子链间距变小,使得分子间作用力增强,链缠结程度加大,使链运动受限.  相似文献   

15.
李灵栋  叶安娜  周胜林  张晓华  杨朝晖 《物理学报》2019,68(2):26402-026402
在纳米受限空间中,高分子往往会表现出与本体状态不同的性质,如异常的链段运动特性及晶相间转变行为等,这些性质对于研究和开发新型高分子材料具有重要的意义,因此针对受限环境下高分子的物理化学特性研究也一直是高分子界关注的焦点.本文通过化学气相沉积法制备垂直取向排列的多壁碳纳米管阵列,借助溶剂润湿–收缩法获得规整的高密度阵列结构,其取向排列的碳纳米管间隙形成了准一维的纳米受限空间,尺寸在5—50 nm尺度下可调.进一步将共轭高分子聚(9,9-二辛基芴-2,7-二基)(PFO)填充到碳管间隙的纳米空间中,制备PFO与取向多壁碳纳米管阵列复合膜.结果发现在碳纳米管形成的纳米受限空间中,PFO的链段热运动行为与本征态PFO薄膜相比受到了明显的抑制,不同晶型间转变速度大大减缓,提高了构象的热稳定性,同时取向排列的碳纳米管对PFO分子链取向排列分布具有明显的诱导作用,有利于获得高性能的PFO晶体.这种高密度取向排列的碳纳米管阵列结构未来可以用于制备优良发光性能及高稳定性的PFO光电器件.  相似文献   

16.
首先对结晶增长速率同浓度、分子量和链柔性依赖性进行总结,然后基于微晶核和粒——高分子键组网络结构模型和高分子分子分凝统计结晶动力学,根据高分子链组是微晶粒同连接链段复合体的结构特征及它们间存在的四个相关性(并存性、简并性、顺反式构象共存性和物料守恒性)的事实,成功地把连接链段缩短增长动力方程同微晶粒体积增大增长动力方程有机结合在一起,从理论上创建出一种微晶粒数增长速率和微晶粒尺寸增长速率表达的一般化计算法,推导出结晶体系的微晶粒数增长速率和微晶粒尺寸增长速率同四种增长机制(近邻折叠,近邻伸直,近邻折叠同近邻伸直并联并存和近邻折叠同近邻伸直串联并存)、结晶温度和高分子起始结构(分子量)间定量表达式.当把分子量的指数同链的构象分数相连后,就又从理论上得到了分子量指数同温度和链柔性间的关系式,并讨论了它们同增长机制间的关系,最后以大量结晶动力学实验数据对上述所得到的关系式进行了验证,结果表明它们均能同实验结果很好符合.  相似文献   

17.
电力系统高压电缆的主要绝缘材料为聚乙烯,为了提升聚乙烯的热稳定性以及减弱水分对其的渗透能力,采用纳米MgO掺杂聚乙烯,利用分子动力学模拟方法建立包含低密度聚乙烯(LDPE)、不同颗粒半径的MgO纳米团簇以及相同质量分数水分的复合模拟模型.研究结果表明,水分会降低复合体系的玻璃化温度,MgO的掺杂则会提高复合体系的玻璃化温度,减弱聚乙烯分子链的运动并减小复合体系的自由体积,使得复合体系结构更加稳定,从而增强了聚乙烯材料的热稳定性能.此外发现水分子的扩散随着温度的上升而增大,纳米MgO的添加会与水分子形成氢键抑制水分子的扩散,同时自由体积的缩减使水分子的溶解度系数与扩散系数都减小,导致水分子的渗透能力减弱,更难以渗透进聚乙烯材料破坏其结构.研究结果可为聚乙烯的水树枝生长以及老化过程的抑制提供有益的参考.  相似文献   

18.
李丽丽  张晓虹  王玉龙  国家辉 《物理学报》2017,66(8):87201-087201
模拟分子的结构和行为有助于更深刻地分析空间电荷陷阱性能变化的微观机理.利用Materials studio软件建立聚乙烯模型,通过分子链段运动产生的能量和自由体积变化对微观结构和电荷陷阱进行分析.结果表明:温度由298 K逐渐升高至363 K的过程中,聚合物分子热运动加剧导致的滑移扩散现象,使自由体积和陷阱能级在363 K处分别出现1542.07 ~3和0.66 eV的最大值和最小值.然而在Z轴方向施加0.0007 Hartree/Bohr(1 Hartree/Bohr=5.2×10~(11)V/m)电场作用时,由于电致伸缩产生Maxwell应力,使分子链段出现局部有序排列,增大范德瓦耳斯能至-360.18 kcal/mol(1 kcal/mol=4.18 kJ/mol),而自由体积降低了279.77 ~3,导致陷阱能级减小0.45 eV.当363 K和0.0007 Hartree/Bohr联合作用时,聚乙烯的陷阱能级相比同温无电场作用降低0.17 eV.分子模拟结果与实测结果相符.利用分子热运动和电致伸缩效应,初步探讨了材料自由体积和范德瓦耳斯相互作用能变化的微观机理,证实分子链段运动改变了微观结构,从而影响电荷陷阱特性.并且与温度相比,电场作用会使材料产生更低能级的空间电荷陷阱.  相似文献   

19.
用Monte Carlo方法模拟研究了一条自由高分子链在分子刷表面吸附的静态和动态特性.结果表明,随着自由链与分子刷之间吸附作用能(ε)的增大,自由链出现由脱吸附态到吸附态的相转变,同时链的扩散由正常模式转为亚扩散模式.临界吸附能(ε_C)几乎与自由链长度无关,但随着分子刷链长度的减小或分子刷链间距的增大而不断增大.在ε_C附近,自由链嵌入分子刷内部,同时链尺寸达到极小,而当ε?ε_C时,自由链处于强吸附态,链节主要分布于分子刷表层,同时整个吸附动态过程可分为自由链吸附和分子刷扩散两个阶段.  相似文献   

20.
抗冲共聚聚丙烯(IPC)是聚丙烯与乙烯-α-烯烃共聚产物在反应釜内形成的原位共混物,乙烯-α-烯烃无规共聚物(橡胶相)作为聚丙烯增韧剂,增韧能力受其组成、玻璃化转变温度(Tg)的影响很大。目前工业界主要采用二甲苯可溶物来表征IPC中橡胶相的含量。该研究采用红外光谱(FTIR)、核磁共振(NMR)和热分析(DSC)等方法对两种不同催化剂制备的IPC的二甲苯可溶物,进行了组成、链结构及热性能对比研究,结果显示二甲苯可溶物中除了乙烯-丙烯无规共聚物外,还含有少量的具有可结晶乙烯序列的乙烯-丙烯多嵌段共聚物,且两个样品中的乙烯-丙烯多嵌段共聚物中可结晶乙烯序列长度存在差别;两个样品中乙烯、丙烯单元在分子链上无规分布的程度比较接近;丙烯序列PPP的含量相对低且乙烯共聚单元含量高的样品具有更低的Tg,这将有利于其对聚丙烯抗冲击韧性的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号