首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 134 毫秒
1.
在高十六烷值燃料中加入高辛烷值燃料是控制均质混合气压缩着火(HCCI)燃烧的一种有效策略。本文利用快速压缩机模拟发动机HCCI燃烧过程,在正庚烷中分别添加异辛烷和乙醇,发现在部分稀燃条件下出现低温放热和高温两阶段放热的三阶段放热现象。进一步采用详细化学动力学模拟计算,结果表明乙醇对正庚烷燃烧起到抑制作用。高温第一阶段放热主要由CH_2O生成大量CO放热引起,高温第二阶段放热主要由生成燃烧最终产物CO_2和H_2O的反应引起。  相似文献   

2.
废气再循环和添加剂对高辛烷值燃料HCCI燃烧的影响   总被引:1,自引:0,他引:1  
本文对废气再循环(EGR)和十六烷值改进荆-过氧化二叔丁基(DTBP)对高辛烷值燃料HCCI燃烧的影响进行了研究。实验结果表明:辛烷值为90的燃料(RON90)只能在高温高负荷下才能运行HCCI燃烧模式;在其中加入少量的DTBP后,RON90实现HCCI燃烧的工况范围向低温低负荷下大幅度拓展。加入添加剂后,低负荷性能改善的同时,浓混合气的着火时刻可以通过EGR将含添加剂燃料的着火时刻推迟到上止点附近,从而大幅度提高热效率,降低了燃料消耗率。  相似文献   

3.
根据碳氢燃料化学反应系统具有层次结构的特性,本文通过分析二甲醚(DME)与液化石油气(LPG)的详细化学反应机理,构建了反映DME/LPG混合燃料均质压燃(HCCI)燃烧的详细化学反应机理.采用该机理应用单区燃烧模型对DME/LPG混合燃料HCCI燃烧的化学反应动力学过程进行了数值计算.计算结果与试验结果对比表明,所构建的DME/LPG混合燃料氧化的详细化学反应机理能够准确预测DME/LPG混合燃料的两阶段放热特性,对低温和高温着火始点的预测很好;但高温反应过程预测欠佳,高温反应机理需要改进.  相似文献   

4.
采用三维CFD模型模拟了直喷柴油机缸内喷雾燃烧过程,模拟缸压曲线得到了实验的验证.通过高温区与喷嘴之间的稳定距离来确定柴油机火焰浮起长度,研究在不同进气条件下火焰浮起长度的变化情况.该模型成功地预测了火焰浮起长度随着初始进气压力的增大而减少,随着进气温度的升高出现先增大后减少的趋势.同时模拟了在不同EGR率下柴油机缸内燃烧情况,发现火焰浮起长度和燃料着火延迟时间都随EGR率的增加而增大.  相似文献   

5.
本文对火花点火激发均质压燃SICI燃烧过程进行了建模,利用发动机试验进行了模型验证,模型能较好地描述混合气被点燃压燃的过程。通过三维数值模拟与解析,对比了纯均质压燃HCCI燃烧模式和SICI燃烧模式下的燃烧过程,分析了SICI燃烧的特点。结果表明,SICI燃烧过程中存在多阶段着火,燃烧呈现出顺序放热。SICI燃烧热效率高,NO_x排放低,是一种汽油机有潜力的燃烧方式。  相似文献   

6.
在一台经改装单缸光学发动机机上,进行不同喷油策略和进气温度条件下均质压燃(HCCI)燃烧化学发光光谱实验研究。实验保证循环供油量一定,燃用正庚烷作为燃料,转速600 r.min-1,进气压力0.1MPa,控制2个不同的进气温度:95和125℃。化学发光光谱研究结果表明,低温反应阶段化学发光很弱,主要源于甲醛光谱;低温反应后期-负温度系数区-高温反应初始阶段主要发光来源还是甲醛光谱;高温反应阶段发光主要来源于CO—O*连续谱,同时在CO—O*连续谱上出现OH,HCO,CH,HCHO谱峰;高温反应后期化学发光明显减弱。与-30°ATDC喷油相比,-300°ATDC喷油时CO—O*连续谱发光强度更大,HCO和OH生成量更多,燃烧反应进行程度更深。较高进气温度下CO—O*连续谱发光强度更大,HCO和OH生成量更多。  相似文献   

7.
本文对参比燃料正庚烷(n-heptane)在一台单缸柴油机上进行了复合均质压燃试验,在缸内直喷正庚烷的同时使用电控燃油喷射系统控制进气道的正庚烷喷射量,以达到控制和改善HCCI着火和燃烧的目的.研究了常温常压下,不同预混合比例和不同负荷的正庚烷复合HCCI燃烧和排放特性.研究发现:在保持NOx排放较低的情况下(100×10-6),这种燃烧方式可以有效的拓宽HCCI的运行范围,大幅降低HC排放(平均降低1/3),同时对降低小负荷时的CO排放也有明显效果.  相似文献   

8.
正丁醇是一种很有前景的柴油替代燃料,针对缸内火焰发展和燃烧中间产物的自发光光谱开展研究,有助于深入理解柴油掺混正丁醇混合燃料对柴油机燃烧过程的影响规律。因此,在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究纯柴油与柴油掺混不同比例正丁醇后对发动机缸内火焰发展和自发光光谱的影响。试验过程中,光学发动机转速为1 200 r·min~(-1),喷油压力为600 bar,进气加热到398 K,使上止点附近达到约900 K温度。纯柴油、柴油掺混20%正丁醇燃料和柴油掺混40%正丁醇燃料分别用D100, DB20和DB40表示,三种燃料在每个着火循环喷入的油量分别为17.5, 18.7和19.2 mg,从而保证发动机输出功相同。试验结果表明:冷却水温不变时,喷油时刻推迟,滞燃期缩短,初始火核形成时刻推迟,蓝色预混火焰比例减小;喷油时刻不变时,提高冷却水温度,滞燃期缩短,初始火核形成时刻提前,蓝色预混火焰比例减小。随着正丁醇掺混比例增加,呈现局部混合气率先着火的特征且着火时刻推迟,蓝色预混火焰比例增加,火焰亮度降低,火焰亮度从大到小依次为:D100DB20DB40。D100燃料随喷油推迟,整体光谱的峰值向长波方向移动,碳烟辐射增强, OH谱带的光强峰值先增大后减小, OH和CH_2O谱带出现的时刻推迟,表明高温和低温反应时刻推迟;喷油时刻不变时,提高冷却水温,整体光谱的光强增加, OH和CH_2O谱带的出现时刻提前,表明高温和低温反应时刻提前。掺混正丁醇后的DB40燃料随喷油推迟,光谱的整体光强增加, OH和CH_2O谱带的光强峰值提高,表明推迟喷油对DB40燃料也是有助于促进高温和低温反应。DB40燃料光谱的整体光强低于D100燃料,其OH和CH_2O的谱带出现的时刻迟于D100燃料,表明掺混正丁醇后燃料的高温和低温反应时刻都相对D100燃料推迟。SOI-15、冷却水温95℃工况下, D100燃料的谱线经过2℃A就呈现出了类似碳烟黑体辐射谱的特征,而DB40燃料先呈现出CO氧化连续谱的特征,经过15℃A才呈现碳烟黑体辐射谱的特征。  相似文献   

9.
实现汽油机的均质混合气压燃(HCCI)的难点是精确地控制着火时刻、燃烧速率以及扩展高负荷运行范围.在缸内直喷汽油机(GDI)上试验研究了分层混合气和辅助火花点火对HCCI燃烧特性的影响,考察了对不同运行工况时的适应性.开展了负阀重叠与缸内多段喷油相结合控制HCCI着火稳定性的研究,考察了不同喷油控制策略对HCCI燃烧的影响,确定了HCCI运行工况范围.  相似文献   

10.
本文针对清洁燃料替代传统燃料,在光学发动机上,利用高速成像技术结合双色法采集了柴油掺混聚甲氧基二甲醚(PODE)-汽油反应活性控制压燃模式下的缸内燃烧特性及碳烟生成过程。试验结果表明:相同预混比下随着PODE的掺混增加,缸内压力峰值、放热率峰值、压力升高率都随之降低,着火延迟期延长,燃烧持续期增加,燃烧相位后移,燃烧趋于平缓。在预混比为50%时,直喷P20D80及P50D50的单循环燃烧总放热量分别为直喷P0D100总放热量的97.89%和95.39%,单循环碳烟生成总量分别为直喷P0D100的55.22%和36.55%,碳烟高温区域分别减少了52.9%和73.32%,碳烟平均温度的稳定值分别降低了6.65 K和20.25 K,碳烟平均KL因子的稳定值分别降低了10.35%和16.12%。相较而言P50D50作为直喷燃料既能保证较高燃烧热效率,又能有效抑制碳烟的生成。  相似文献   

11.
This study investigates the effects of intermediate temperature heat release (ITHR) on autoignition reactivity of full boiling range gasolines with different octane sensitivity through intake temperature and simulated exhaust gas recirculation (EGR) sweeps in a homogenous charge compression ignition (HCCI) engine. To isolate the ITHR effects, low temperature reactivity was suppressed through the use of high intake temperature and low intake oxygen mole fraction. For quantification of ITHR, a new method was applied to the engine data by examining the maximum value of the second derivative of heat release rate. Combustion phasing comparisons of fuels with octane sensitivity showed that fuel with less octane sensitivity became more reactive as intake temperature and simulated EGR ratio decreased, while fuel with higher octane sensitivity had a reverse trend. For all of the fuels that were tested, the amount of ITHR increased as the intake temperature and oxygen mole fraction increased. These ITHR trends, depending on octane sensitivity, were almost identical with the trends of combustion phasing, showing that ITHR significantly affects fuel autoignition reactivity and determines octane sensitivity.  相似文献   

12.
Exhaust gas recirculation (EGR) technology can be used in internal combustion engines to reduce NOx emission and improve fuel economy. However, it also affects the end-gas autoignition and engine knock since NOx in EGR can promote ignition. In this study, effects of NOx addition on autoignition and detonation development in dimethyl ether (DME)/air mixture under engine-relevant conditions are investigated. Numerical simulation considering both low-temperature and high-temperature chemistry is conducted. First the kinetic effects of NOx addition on the negative temperature coefficient (NTC) regime are assessed and interpreted. It is found that NOx addition greatly promotes both low-temperature and high-temperature ignition stages mainly through increasing OH production. Then the autoignitive reaction front propagation induced by either local NO accumulation or a cold spot within NTC regime with different amounts of NO addition is investigated. For the first time, supersonic autoignition modes including detonation induced by local NO accumulations are identified. This indicates that local accumulation of NOx in end gas might induce super-knock in engines with EGR. A new parameter quantifying the ratio of sound speed to average reaction front propagation speed is introduced to identify the regimes for different autoignition modes. Compared to the traditional counterpart parameter used in previous studies, this new parameter is more suitable since it yields a detonation development regime in a C-shaped curve which is almost unaffected by the initial conditions. The results in this study may provide fundamental insights into knocking mechanism in engines using EGR technology.  相似文献   

13.
The exhaust gas recirculation (EGR) method can suppress knock and improve the thermal efficiency of engines. But it will also deteriorate the combustion stability and engine power. Turbulent jet ignition (TJI) is a reliable ignition resource for improving ignition stability and burning rate. However, the residual productions in the pre-chamber will worsen the performance of the TJI. To this end, a self-designed pre-chamber with a scavenging system has been proposed. In this study, the ignition process and flame propagation phenomena under different EGR dilution ratios for H2/N2/O2 and CH4/N2/O2 mixtures were conducted in a constant-volume combustion chamber. The results suggested that the increase in EGR dilution weakens the influence of cellular instability and causes buoyancy instability, the latter of which could be mitigated by the passive TJI method. For the passive TJI mode, the exit time of the hot jet was delayed, and the turbulent flame speed decreased with the increase of EGR dilution ratio. Four ignition phenomena, namely jet re-ignition, flame buoyancy, re-ignition failure, and misfire, were distinctly identified. However, EGR tolerance cannot be extended by passive pre-chambers. Therefore, the pre-chamber with a scavenging system that can effectively extend the lean combustion tolerance with EGR dilution compared to SI and passive TJI was proposed. The effects of air and fuel injection quantities on ignition and flame propagation were investigated. The flame propagation velocity was positively related to the air injection mass, whereas an optimum fuel mass was required to achieve fast flame propagation. The EGR limit based on dual injections in the pre-chamber was obviously extended. Moreover, under near EGR tolerance conditions, a leaner fuel injection in the pre-chamber was required to realize successful ignition in the main chamber, as strong turbulence could cause high heat transfer loss with the cool unburnt mixture and suppress the occurrence of re-ignition.  相似文献   

14.
This work reports on an experimental and modeling study on the low-temperature heat release (LTHR) characteristics for three RON 90 binary blends (n-heptane blended with isooctane, toluene and ethanol) in a Cooperative Fuel Research (CFR) engine at lean and stoichiometric conditions that are representative of homogeneous charge compression ignition (HCCI) and spark-ignition (SI) end-gas combustion conditions, respectively. An analysis of the end-gas temperature-pressure (T-P) trajectories was performed to identify the intake conditions leading to similar T-P trajectories between the two lambdas for each fuel blend. A heat release analysis was then conducted for the identified cases, where fuel-to-fuel differences in LTHR were identified and found to be sensitive to the operating condition. Simulations were conducted for these cases using a recently updated chemical kinetic model and a 0-D engine model, where good qualitative and reasonable quantitative agreements in LTHR were obtained. Sensitivity analysis was also performed directly on the rates of LTHR, to understand the controlling chemical reactions of LTHR, providing further insights into the fuel-to-fuel differences. The results demonstrate the significant promoting effect of n-heptane on LTHR rates, while inhibiting effects were seen for ethanol and toluene. Also highlighted was the importance of H-atom abstraction reactions from the chemistry of each fuel component, which could lead to contradictory fuel behavior depending on the locations of the H site of the abstraction reaction due to the different ensuing pathways for the primary fuel radicals.  相似文献   

15.
It is well known that spark ignited engine efficiency is limited by end gas autoignition, commonly known as knock. This study focuses on a recently discovered phenomena, pre-spark heat release (PSHR) due to low-temperature chemistry, and its impact on knock behavior. Boosted operating conditions are more common as engines are downsizing and downspeeding in efforts to increase fuel economy and prone to PSHR. Experiments were prone at fixed fueling and air fuel ratio for a range of intake temperature that spanned the threshold for PSHR. It was found that when PSHR occurred, the knock-limited combustion phasing was insensitive to intake temperature; higher intake temperatures did not require retarded timings as it is usual. Inspection of the temperature–pressure history overlaid on ignition delay contours allow the results to be explained. The temperature rise from the low-temperature reactions moves the end gas state into the negative temperature coefficient (NTC) region, which terminates the heat release reactions. The end gas then resides in the long ignition delay peninsula, which inhibits knock.  相似文献   

16.
Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.  相似文献   

17.
Bio-based alternative fuels have received increasing attention with growing concerns about depletion of fossil reserves and environmental deterioration. The development of new combustion concepts in internal combustion engines requires a better understanding of autoignition characteristics of the bio-based alternative fuels. This study investigates two cases of alternative fuels, namely, a kerosene-type fuel farnesane and an oxygenated fuel, TPGME, and compares those fuels with full-boiling range of fuels with similar cetane number. The homogeneous autoignition and spray ignition characteristics of the selected fuels are studied using a modified CFR octane rating engine and a cetane rating instrument, respectively. When comparing farnesane with a full-boiling range counterpart (HRJ8), their similar cetane ratings result in comparable combustion heat release, but the overall ignition reactivity of farnesane is stronger than HRJ8 during the pre-ignition process. Results from a constant volume spray combustion chamber indicate that the spray process of farnesane and HRJ8 strongly influences the overall ignition delay of each fuel. Despite the similar cetane ratings of TPGME and n-heptane, TPGME shows greater apparent low-temperature oxidation reactivity at low compression ratios in the range from CR 4.0-5.5 than n-heptane. A simplified model focused on the key reaction pathways of low-temperature oxidation of TPGME has been applied to account for the stronger low-temperature reactivity of TPGME, supported by density functional theory (DFT) calculations. Regardless of the similar cetane ratings of the fuels, n-heptane and JP-8/SPK lead to similar total ignition delay times, while TPGME shows the shortest overall ignition delay times in the constant volume combustion chamber.  相似文献   

18.
Furan and its derivatives have been receiving attention as next generation alternative fuels, related to advanced bio-oil production. However, the ignition quality of furans allows their use only as an additive to diesel fuel in CI engines, which potentially requires the continued use of a fossil-derived base fuel. This study first adopts tri-propylene glycol mono-methyl ether (TPGME) as a substitute for diesel fuel with addition of furan and furan derivatives, including 2-methylfuran, 2,5-dimethylfuran, and furfural, thereby removing fossil-derived fuels from the mixture. With this motivation, gas-phase ignition characteristics of furans were investigated in a modified CFR motored engine, displaying an absence of low temperature heat release (LTHR), while n-heptane as a reference fuel shows a strong two-stage ignition characteristic under the same condition. The structural impact of furans is represented as global oxidation reactivities that are as follows: furan?<?2-methylfuran?<?2,5-dimethylfuran?<?furfural?<?n-heptane. The ranking of individual furans is supported by bond dissociation energies of each fuel's functional group substituent on the furan-ring. Ignition characteristics of TPGME display a strong low-temperature oxidation reactivity; however, its reactivity rapidly diminishes with increasing amounts of furan, shutting down low-temperature oxidation paths. The structural impact of furan and methyl-substituted furans on reactivity is significantly muted when blended with TPGME, as observed in a motored CFR engine and a constant volume spray combustion chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号