首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes a systematic approach adopted to establish Laser and Phase Doppler Anemometry, LDA/PDA, experimental techniques that would allow velocity and dropsize measurements to be made over wide velocity and size ranges with confidence in partially atomized sprays. The analysis considers the sprays generated by different gasoline direct injection (GDI) systems injecting into air under atmospheric conditions. The upper limit to the dropsize range in the fuel sprays was confirmed using (a) an Oxford Lasers' VisiSizer and (b) droplets of a known size produced by a mono‐dispersed droplet generator. GDI fuel sprays are highly transient, optically dense and provide a high degree of penetration and atomization. The measurement problem is therefore one of the detection of small, high speed droplets inside a dense cloud of surrounding droplets. Furthermore, under the transients found at the start and end of injection and during high fuel loads, fuel elements in the form of sheets, ligaments and filaments are also injected. These liquid fuel elements subsequently break‐up, downstream from the nozzle, to form droplets of a much larger size class but with a much lower number density [1]. The co‐existence of these liquid fuel elements and the widely different size classes in the spray are considered to pose a problem for dropsize measurements by the PDA technique. In particular: the wide dynamic range of light intensities scattered by the fuel elements and droplets; the trajectory of large drops through the edges of the PDA measurement volume with its Gaussian intensity distribution [2] and the high probability of non spherical droplets. The work concludes that the LDA/PDA measurement technique, as applied here, is robust. It can discriminate between partially and fully atomized sprays, has a high probability of accurately measuring dropsizes larger than the measurement volume and give a realistic indication of ‘sizes’ for non spherical droplets. However, specification of the PDA system parameters must be strictly compatible with the measurement task to yield unambiguous results.  相似文献   

2.
乌日娜  史瑞新  邬小娇  吴杰  岱钦 《中国物理 B》2016,25(9):94209-094209
A dye-doped polymer-dispersed liquid crystal film was designed and fabricated,and random lasing action was studied.A mixture of laser dye,nematic liquid crystal,chiral dopant,and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules.Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm,the size of the liquid crystal droplets was small.Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation,a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575–590 nm.The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 m J.Under heating,the emission peaks of random lasing disappeared.By detecting the emission light spot energy distribution,the mechanism of radiation was found to be random lasing.The random lasing radiation mechanism was then analyzed and discussed.Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism.The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small,which is beneficial to form multiple scattering.The transmission path of photons is similar to that in a ring cavity,providing feedback to obtain random lasing output.  相似文献   

3.
The distribution of sizes and velocities of droplets initially formed in sprays is an important piece of information needed in the spray modelling, because it defines the initial condition of the spray droplets in the predictive calculations of the downstream two‐phase flow fields. A predictive model for the initial droplet size and velocity distributions in sprays is formulated in this study. The present model incorporates both the deterministic and the stochastic aspect of spray formation process. The deterministic aspect takes into account of the unstable wave motion before the liquid bulk breakup through the linear and nonlinear instability analysis, which provides information for the liquid bulk breakup length, the mass‐mean diameter and a prior distribution for the droplet sizes corresponding to the unstable wave growth of various wavelengths. The stochastic aspect deals with the final stage of droplet formation after the liquid bulk breakup by statistical means through the maximum entropy principle based on Bayesian entropy. The two sub‐models are coupled together by the various source terms signifying the liquid‐gas interaction, the mass mean diameter and the prior distribution based on the instability analysis. The initial droplet size and velocity distributions are measured experimentally by phase‐Doppler interferometry for sprays generated by a planar research nozzle and a practical gas turbine airblast nozzle. For the two nozzles, the liquid bulk sheet is formed before its breakup in a coflowing air stream. It is found that the model predictions are in satisfactory agreement with the experimental data for all the cases measured. Hence the present model may be applied to a variety of practical sprays to specify the initial conditions for the spray droplets formed in practical spray systems.  相似文献   

4.
全场彩虹技术测量喷雾浓度及粒径分布   总被引:2,自引:0,他引:2       下载免费PDF全文
喷雾颗粒的浓度、粒径等多参数的同时测量是研究喷雾的关键. 对应用全场彩虹技术测量双组分液滴的浓度及粒径分布进行了研究. 基于改进的Nussenzweig理论,对液滴折射率和粒径分布采用无分布函数算法进行最优化求解, 然后通过折射率与浓度的关系反推液滴浓度.用模拟全场彩虹信号对该算法进行了验证, 该算法可准确反演具有单峰分布、双峰分布粒径特征的液滴群的折射率与粒径分布. 并对体积分数从0%到100%的乙醇溶液喷雾进行了实验测量, 结果表明,所测得折射率与理论值符合,粒径分布稳定.该技术在喷雾浓度测量方面具有广阔的应用前景. 关键词: 全场彩虹技术 折射率 粒径 组分  相似文献   

5.
基于机器视觉的细水雾液滴尺寸测量与分析   总被引:5,自引:0,他引:5  
为了满足科研与工程中对细水雾液滴尺寸测量的高精度低成本要求,对雾滴尺寸的机器视觉测量方法进行了深入研究.在自行建立的高压喷雾系统与雾滴采集装置上对细水雾液滴进行了采样,用显微镜及其CCD相机对雾滴样本进行了图像采集,用图像处理软件对采集的雾滴图像进行了处理与分析,测量并统计了5966个雾滴,得到了雾滴尺寸的频谱分布和累积分布以及雾滴平均直径和特征直径,将测量结果与相位多普勒粒子分析仪(PDPA)的测量结果进行了比较.结果表明,机器视觉方法町测量的最小雾滴直径约4.39 μm;机器视觉测量结果与PDPA测最结果相当接近,两种方法测得的细水雾液滴平均直径和特征直径的相对误差均在5%以内,雾滴尺寸均匀度指数的相对误差为0.27%.  相似文献   

6.
Water, sprayed in the form of tiny droplets, has emerged as a potential fire suppressant after the halon compounds such as trifluorobromomethane (CF3Br, Halon 1301) were banned by the Montreal protocol. The size distribution of the water droplet plays a crucial role in the effectiveness of the water spray in fire suppression. A numerical investigation of the influence of size distribution of a polydisperse water spray on extinction of counterflow diffusion flames is presented in this paper. This study uses laminar finite rate model with reduced CHEMKIN chemistry for numerical simulations. The discrete phase, namely the water spray, is simulated using Lagrangian Discrete Phase Modelling approach. In this work, the polydispersity of water spray is taken into account in the numerical simulation by a suitable Rosin–Rammler distribution. Results obtained from numerical simulation are validated with the experimental results reported in the literature. This study demonstrates that the representation of the polydisperse spray by a monodisperse spray (with droplet diameter same as the SMD of the polydisperse spray) in numerical simulations is not always justified and it leads to deviation from the experimental results. The effects of number mean diameter and spread parameter on the efficacy of flame suppression are investigated for polydisperse sprays. A comprehensive comparison is done between the effectiveness of monodisperse and polydisperse water sprays. An optimum droplet diameter is obtained for monodisperse sprays for which the effectiveness of the spray is maximum. The effects of evaporation Damköhler number and Stokes number of water droplets on flame suppression have also been explained.  相似文献   

7.
《Journal of Electrostatics》2006,64(3-4):194-202
A multi-nozzle electrospray system was developed as a charged droplet source for cleaning a gas contaminated with fine particles. The efficiency of removal of fine particles from the gas can be significantly increased, as compared to uncharged sprays, when the droplets are electrically charged. In the presented experiments, the spray of the droplets of size lower than 100 μm was charged either positively or negatively. Cigarette smoke was used as a source of submicrometer particles. The suppression of the particle concentration was determined after different time intervals of spraying of water. Further improvement in gas cleaning was obtained after charging the smoke particles using a specially designed corona charger. The efficiency of the cleaning process was similar to that obtained for droplets generated by mechanical atomisers with induction charging, but the electrospraying allowed decreasing the water consumption up to about three times.  相似文献   

8.
喷雾蒸发燃烧的研究对指导发动机燃烧系统设计具有重要意义。本文搭建了高速数字全息系统,在线测量乙醇喷雾火焰中液滴的粒径、三维位置、速度及蒸发率。对喷雾火焰中的液滴进行了统计分析,得到液滴粒径及三维空间分布。燃烧喷雾场液滴的平均粒径为68μm;非燃烧火焰测试区液滴数量多且较密集,燃烧火焰测试区液滴数量少且稀疏.追踪单液滴并处理得到湍流火焰中液滴的运动轨迹及速度。通过研究粒径的平方D2随停留时间ts的变化,测得液滴平均蒸发率为-3.343×10-7 m2/s.  相似文献   

9.
An attempt was made to measure, non-intrusively, average droplet sizes in a dense cooling spray of water. The small droplet size and high number density presented severe problems to conventional nonintrusive measurement methodology with phase Doppler anemometry (PDA). A recently developed optical technique, with more promise for measurements in dense sprays, laser sheet dropsizing (LSD), was tried with more success. Sources of error were considered and the uncertainty of the drop sizes measured by LSD was estimated at ±7%, neglecting multiple scattering, dropsize distribution effects and the contributions of droplets at the edge of the laser beam. The greatest of the known contributions to uncertainty is the calibration of the technique against PDA. The greatest of the unknown contributions is likely to be multiple scattering in such dense sprays. Received: 1 March 2000 / Revised version: 25 May 2000 / Published online: 20 September 2000  相似文献   

10.
A method has been developed to increase the sensitivity of phase Doppler interferometry-based particle sizing systems to small particles in the presence of a spray containing large and small droplets; an important consideration when using seed particles to track the gas-phase velocity in multi-phase flows. The method, applicable to PDPA systems configured to operate in first and higher order refraction mode, involves doping the sprayed liquid with a dye that is strongly absorbing at the incident laser wavelengths. This results in greatly diminished scattered intensity from larger droplets, thus allowing the photomultiplier gain to be set to a level sufficient to easily detect small particles without saturation. Tests conducted indicate that, at a collection angle of 30° and droplet absorptivity of γ = 0.014/μm, the PDPA can accurately size absorbing droplets up to approximately 200 μm. This upper limit can be extended by changing selection angle. Tests performed with an actual spray demonstrated that the method allowed detection of 1 μm to 235 μm droplets; more than four times the instrument's usual range of 50: 1. A data correction scheme to determine the effective probe volume radius for each particle size class has been developed for absorbing particles, as standard correction schemes derived for non-absorbing droplets excessively weigh distributions toward smaller particles.  相似文献   

11.
宋跃辉  周煜东  王玉峰  李仕春  高飞  李博  华灯鑫 《物理学报》2018,67(24):249201-249201
基于大气物理学研究了水云云滴增长过程中的粒谱及散射特性.研究结果表明,凝结增长使粒谱半高宽和有效半径不断增加,碰并增长使粒谱出现多峰分布,有效半径增加.在凝结增长和碰并增长共同作用下,有效半径的平均增长速率为8 nm/s.凝结增长和碰并增长单独作用下,消光系数和散射系数随时间呈线性变化.在二者共同作用下,除3.2 mm波长外,消光系数和散射系数随时间呈指数增长;1.064, 2.2, 3.7, 12和22μm波长的不对称因子逐渐趋于稳定,200μm的不对称因子呈指数增长,3.2 mm的不对称因子基本保持不变;1.064和2.2μm波长的雷达比在20 sr附近波动,3.7μm波长的雷达比呈大幅振荡.云滴增长过程中,水云在1.064, 2.2和3.7μm波长的单次散射反照率逐渐降低,在12μm, 22μm, 200μm和3.2 mm波长的单次散射反照率逐渐增加,波长指数的绝对值逐渐减小.研究结果可为天气预报、地气辐射平衡研究和遥感数据校正提供重要的参考.  相似文献   

12.
《Composite Interfaces》2013,20(4):375-389
The microdroplet technique is usually designed as a fibre embedded in a drop of resin and subsequently pulled out while the drop is being supported by two knife edges, resulting in either debonding of the droplets from the fibres, or breakage of the fibres before debonding can occur. In this study, the microdroplet technique was performed using a platinum ring with a 40 μm hole instead of the usual two knife edges, giving an axisymmetric geometry, load and stress distribution. Glass/phenolic and glass/polyester composite systems were tested experimentally and subsequent finite element modelling studies were performed to assess the variation of droplet size, and contact angle between the droplet and fibre. It was found that contact angle is of major influence in the proposed failure model. This study characterizes the influence of the contact angle between the droplet and the fibre on the subsequent stress distribution in the microdroplet specimen.  相似文献   

13.
Doklady Physics - Changes in the composition of groups of droplets (sprays) emitted by a drop of water with a diameter of D = 0.42 cm at a velocity of U = 3.3 m/s falling into a crucible with a...  相似文献   

14.
气泡雾化喷嘴喷雾平均直径在下游流场中的分布   总被引:9,自引:2,他引:7  
文利用激光衍射粒度仪对气泡雾化喷嘴下游流场进行了实验研究,主要分析了雾化颗粒直径随径向和轴向距离变化的趋势.由于喷嘴出口处气液两相流型和颗粒自身重量的影响,液雾颗粒沿径向呈现非轴对称分布;而液雾颗粒直径随着轴向距离的增加呈现先减小、后增大的趋势,颗粒直径的减小是大量气泡爆炸的结果,而后的增加则是由于颗粒之间的相互粘结造成的。  相似文献   

15.
For the measurement of particles size with backscattering method, the suitable range of particles size measurement have been presented by independent algorithm in Visual‐infrared incident spectrum. We defined the range according to the retrieved results based on the analysis and comparison to many kinds of R‐R distribution function. The simulation computation results showed that the particles size measurement range is from 0.05 μm to 18 μm with incident spectrum from 0.4 μm to 2 μm and different refractive index. The results retrieved were satisfied even if 1 % noise was added into the backscattering intensity.  相似文献   

16.
We present a measurement technique that is capable of simultaneously determining sizes and positions of multiple transparent droplets in a plane from scattered light features. The technique is largely independent of particle intensity and mutual obscuration. Reflected and refracted light from the droplets in a pulsed laser sheet is recorded holographically to yield the smallest possible probe volume and the largest possible number density. Larger droplets are best analyzed at the image plane; in this case, the droplets appear as two spots (glare points), whose separation is proportional to the droplet diameter. Smaller droplets are easier to analyze at an out‐of‐focus plane, where their images appear as fringe patterns whose spatial frequency is related to droplet size. Photographic techniques allow only one of these planes to be chosen and are therefore not suitable for multidisperse sprays. Optical holography allows to analyze arbitrary depths, but often suffers from low sensitivity and long analysis times. With digital holography, the spray images are captured digitally by a CCD camera and reconstructed numerically; as in optical holography, the particle reconstruction plane can be freely chosen a posteriori to optimize the measurement. We discuss the issues raised by the transition from holographic film to a CCD sensor as the recording medium, and demonstrate the capabilities of the digital technique.  相似文献   

17.
Real process fluids such as emulsions and suspensions are optically absordent as well as inhomogeneous. Using phase-Doppler anemometry (PDA)for investigating the spray cone, the inhomogeneites have led to incomprehensible size distributions. In this paper, solutions of instant coffee and condensed milk, representing typical process fluids, were chosen for PDA measurements in comparison with PDA applied to water droplets with the same atomization process in order to clarify the reasons for the measured broad size distributions. By applying PDA to monodisperse droplets and to “monodisperse” and real polydisperse sprays consisting of such fluids, it is shown how the measured size distributions arise, Based on this knowledge, the real size distributions are reconstructed and compared with that of water atomization. Therefore, PDA can in future also be applied to real process fluids, and process control, based on the information provided by PDA, is coming nearer.  相似文献   

18.
研究了细水雾遮蔽衰减热辐射过程中,取得最佳遮蔽效果的动态雾滴初始粒径问题。综合考虑雾滴的光学特性和动力学特性,定义了热遮蔽指数作为度量动态雾滴消光能力的指标。在模型构建中,用索特粒径将多分散性的细水雾等效成单分散系;用Planck平均法获取水雾的灰体辐射特性参数;并采用数组调用、线性插值的方法提高大量计算Mie氏消光因子的效率。研究发现,基于遮蔽指数的最佳消光粒径要远大于基于光学特性的最佳消光粒径。  相似文献   

19.
An image analysis technique has been developed in order to determine the drop size distributions of sprays produced by low‐velocity plain cylindrical jets. The particle sizing method is based on incoherent backlight images. Each drop is analyzed individually in the image. The two‐dimensional image resulting from the projection of the three‐dimensional object shape (the drop) on a screen (the video sensor surface) is modeled. The model, based on the point spread function formulation, has been developed to derive a relation between contrast and relative width of individual drops. This relation is used to extend the domain of validity of drop size in terms of size range, out of focus and image resolution. The shape parameter is determined for each drop image through morphological analysis. Spherical and non‐spherical droplets are then sorted on the basis of this parameter. Non‐spherical drops are regarded as non‐fully atomized liquid bulks or coalesced drops. Finally, the droplet size distribution of true spherical droplets is established for a low‐velocity plain cylindrical liquid jet.  相似文献   

20.
The paper presents results of experimental investigation of properties of charged sprays generated by two types of pressure atomizers with charging by induction. Among other possible methods of charged spray generation, the induction charging has been considered due to its most practical importance. The goal of this research is to optimise the charging process with respect to obtain droplets of required size and charge for their application for exhaust gas cleaning from submicron particles in electrostatic scrubber used for the removal of PM from Diesel engine exhausts. Electrostatic scrubbers use electrostatic forces in order to deposit fine charged particles onto oppositely charged droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号