首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.  相似文献   

2.
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.  相似文献   

3.
The fidelity and entanglement entropy in an antiferromagnetic-ferromagnetic alternating Heisenberg chain are investigated by using the method of density-matrix renormalization-group. The effects of anisotropy on fidelity and entanglement entropy are investigated. The relations between fidelity, entanglement entropy and quantum phase transition are analyzed. It is found that the quantum phase transition point can be well characterized by both the ground-state entropy and fidelity for large system.  相似文献   

4.
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.  相似文献   

5.
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.  相似文献   

6.
We investigate the entanglement between a spin and its environment in impurity systems which exhibit a second-order quantum phase transition separating a delocalized and a localized phase for the spin. As an application, we employ the spin-boson model, describing a two-level system (spin) coupled to a sub-Ohmic bosonic bath with power-law spectral density, J(omega) proportional to omega(s) and 0 < s < 1. Combining Wilson's numerical renormalization group method and hyperscaling relations, we demonstrate that the entanglement between the spin and its environment is always enhanced at the quantum phase transition resulting in a visible cusp (maximum) in the entropy of entanglement. We formulate a correspondence between criticality and impurity entanglement entropy, and the relevance of these ideas to nanosystems is outlined.  相似文献   

7.
We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.  相似文献   

8.
P.R. Crompton   《Nuclear Physics B》2009,810(3):542-562
The Lee–Yang theorem for the zeroes of the partition function is not strictly applicable to quantum systems because the zeroes are defined in units of the fugacity ehΔτ, and the Euclidean-time lattice spacing Δτ can be divergent in the infrared (IR). We recently presented analytic arguments describing how a new space-Euclidean time zeroes expansion can be defined, which reproduces Lee and Yang's scaling but avoids the unresolved branch points associated with the breaking of nonlocal symmetries such as Parity. We now present a first numerical analysis for this new zeroes approach for a quantum spin chain system. We use our scheme to quantify the renormalization group flow of the physical lattice couplings to the IR fixed point of this system. We argue that the generic Finite-Size Scaling (FSS) function of our scheme is identically the entanglement entropy of the lattice partition function and, therefore, that we are able to directly extract the central charge, c, of the quantum spin chain system using conformal predictions for the scaling of the entanglement entropy.  相似文献   

9.
Entanglement, one of the most intriguing features of quantum theory and a main resource in quantum information science, is expected to play a crucial role also in the study of quantum phase transitions, where it is responsible for the appearance of long-range correlations. We investigate, through a microscopic calculation, the scaling properties of entanglement in spin chain systems, both near and at a quantum critical point. Our results establish a precise connection between concepts of quantum information, condensed matter physics, and quantum field theory, by showing that the behavior of critical entanglement in spin systems is analogous to that of entropy in conformal field theories. We explore some of the implications of this connection.  相似文献   

10.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

11.
祝敬敏 《中国物理快报》2008,25(10):3574-3577
We present a new general and much simpler scheme to construct various quantum phase transitions (Q, PTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) OPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of Q, PT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous.  相似文献   

12.
The single-copy entanglement of a given many-body quantum system is defined [J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005)10.1103/PhysRevA.72.042112] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orús, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit-i.e., given an infinite number of copies of the system. It is an open question as to what the equivalent behavior for gapped systems is. In this Letter, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy; i.e., all the entanglement present may be distilled from a single specimen.  相似文献   

13.
Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.  相似文献   

14.
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.  相似文献   

15.
We investigate the entanglement dynamics and Bell violation of three-qubit quantum states under an environment consisting of an XY spin chain with Dzyaloshinski–Moriya (DM) interaction. From the results, we find that the entanglement dynamics depends not only on the DM interaction, the magnetic field, and the anisotropy parameter but also on the number of the freedom degrees of the environment. The decoherence-free subspaces of our model have been identified and the Bell violation of quantum states is also discussed.  相似文献   

16.
A numerical method of the adaptive time-dependent density-matrix renormalization-group (t-DMRG) is introduced to calculated one-dimensional quantum spin systems with next-nearest-neighbor interaction. The algorithm to study the local magnetization in spin-1/2 Heisenberg XX chain is checked. The analysis of error indicates that this method is efficient to study the spin-1/2 chain with next-nearest-neighbor interaction. By using of the method, the effects of the next-nearest-neighbor interaction on the dynamics of the local magnetization and entanglement entropy are studied.  相似文献   

17.
We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase.  相似文献   

18.
We study the dynamics of various branched spin chain systems. In such systems entanglement can be generated and distributed, providing an essential resource for teleportation or distributed quantum processing. We show in detail how simple operations can be employed at chosen times to change the subsequent dynamics of the branched spin chains, rendering the distributed entanglement more accessible.  相似文献   

19.
We investigate quantum phase transitions (QPTs) in spin chain systems characterized by local Hamiltonians with matrix product ground states. We show how to theoretically engineer such QPT points between states with predetermined properties. While some of the characteristics of these transitions are familiar, like the appearance of singularities in the thermodynamic limit, diverging correlation length, and vanishing energy gap, others differ from the standard paradigm: In particular, the ground state energy remains analytic, and the entanglement entropy of a half-chain stays finite. Examples demonstrate that these kinds of transitions can occur at the triple point of "conventional" QPTs.  相似文献   

20.
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals’ in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号