首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
The goal of this research is to highlight the effectiveness of associating the spectroscopic methods EELS and EPES in the study of thin film grown on substrates. We use the great sensitivity of the Electron Energy Loss Spectroscopy (EELS) and the Elastic Peak Electron Spectroscopy (EPES) to study native InPO4 oxide of thin thickness (10 Å) grown on InP by UV/ozone oxidation. By varying the primary energy of the electron beam and the incidence angle, we give interesting results related to the chemical and the physical analyses of InPO4/InP system. These spectroscopic methods reveal the homogeneity of the chemical composition of InPO4 on the surface. Furthermore, the electron irradiation of InPO4/InP leads to the breaking of chemical bonds between the species of InPO4 and InP to form a new oxide In2O3 on the surface. We show that the heating of InPO4/InP at 450 °C in UHV allows a good reconstruction of the surface with elimination of defects on the surface and at the interface. Thus, the surface becomes more stable to impede all oxidation processes due to the electron beam irradiation even for a time as long as 30 min.  相似文献   

2.
《Current Applied Physics》2015,15(8):915-919
The structural and magnetic properties of non-coated and SiO2-coated iron oxide (Fe3O4) nanoparticles (NPs) were investigated by a polarized small-angle neutron scattering (P-SANS) method. Measurement of the P-SANS allowed us to obtain nuclear and magnetic scattering cross sections of the NPs under applied magnetic field. The analysis of the scattering intensity provided the structural parameters and the spatial magnetization distribution of the non-coated and the SiO2 coated core–shell NPs. The measured radius of both NPs and the shell thickness of the core–shell NPs were in consistent with those measured by the transmission electron microscopy. In comparison, the magnetic core radii of both NPs were 0.12–0.6 nm smaller than the nuclear radii, indicating the magnetization reduction in the surface region of core Fe3O4 in both NPs. However, the reduced magnetization region, which is the surface spin canting region, of the SiO2-coated NPs was relatively narrower than that of the non-coated NPs. We suggest that the SiO2 coating on the Fe3O4 NPs may stabilize the spin order of atoms and prohibit the oxidation or defect formation at the surface region of the Fe3O4 NPs, and enhance the corresponding magnetization of the Fe3O4 NPs by the reduction of the spin canting layer thickness.  相似文献   

3.
The electrical and microstructural properties of the PdSi based ohmic contacts on n-InP are discussed in the research. A low specific contact resistance of 2.25 × 10−6 Ω cm2 is obtained on Au/Si/Pd/n-InP contact after rapid thermal annealing (RTA) at 450 °C for 30 s. The low contact resistance can be maintained at the order of 10−6 Ω cm2 even up to 500 °C annealing. From the Auger analysis, it is found that both the outdiffusion of In and the indiffusion of Si into the InP surface occurred at the ohmic contact sample. The formation of the Pd3Si compound lowered the barrier of the contact. The reactions between Pd and InP of the contact, forming In vacancies, and leading the doping of Si to the InP contact interface.  相似文献   

4.
Zn-doped InP and GaInPAs layers were grown by OrganoMetallic Vapor-Phase Epitaxy (OMVPE). The epitaxial films consist of a primary GaInPAs/InP epitaxial layer and a secondary InP/GaInAs epitaxial layer. We present evidence that the redistribution of Zn acceptors in the primary epitaxial layer is strongly influenced by the Zn doping concentration in the secondary epitaxial layer. Rapid redistribution of Zn acceptors in the primary epitaxial layer occurs if the Zn doping concentration in the secondary epitaxial layer exceeds a critical concentration ofN Zn3×1018cm–3. The influence of the growth temperature on this effect is also presented.  相似文献   

5.
Abstract  The anisotropic gold and spherical–quasi-spherical silver nanoparticles (NPs) were synthesized by reducing aqueous chloroauric acid (HAuCl4) and silver nitrate (AgNO3) solution with the extract of phyllanthin at room temperature. The rate of reduction of HAuCl4 is greater than the AgNO3 at constant amount of phyllanthin extract. The size and shape of the NPs can be controlled by varying the concentration of phyllanthin extract and thereby to tune their optical properties in the near-infrared region of the electromagnetic spectrum. The case of low concentration of extract with HAuCl4 offers slow reduction rate along with the aid of electron-donating group containing extract leads to formation of hexagonal- or triangular-shaped gold NPs. Transmission electron microscopy (TEM) analysis revealed that the shape changes on the gold NPs from hexagonal to spherical particles with increasing initial concentration of phyllanthin extract. The Fourier transform infrared spectroscopy and thermogravimetric analyses reveal that the interaction between NPs and phyllanthin extract. The cyclic voltammograms of silver and gold NPs confirms the conversion of higher oxidation state to zero oxidation state. Graphical abstract  Anisotropic gold and silver nanoparticles were synthesized by a simple procedure using phyllanthin extract as reducing agent. The rate of bioreduction of AgNO3 is lower than the HAuCl4 at constant concentration of phyllanthin extract. The required size of the nanoparticles can be prepared by varying the concentration of phyllanthin with AgNO3 and HAuCl4.   相似文献   

6.
Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.  相似文献   

7.
Three kinds of nanoscale powders containing Fe3O4 nanoparticles (NPs) have been studied by ferromagnetic resonance (FMR): (i) Fe3O4 NPs grown and then covered with polyaniline (PANI), (ii) unclad Fe3O4 NPs, and (iii) Fe3O4 NPs grown “in situ” with the PANI. In every case, there is no low field microwave absorption, rather a single FMR line is observed. However, the half-power widths are of order of 1 kOe presumably due to a distribution of internal fields. For type I particles with a low concentration (below 40%) of Fe3O4, the observed resonance fields (Hr) are close to those expected for spheres with negligible magnetocrystalline anisotropy. For all other cases, Hr values are significantly lower. Such shortfalls can be roughly understood by invoking dipolar interactions between the grains, stresses frozen in grains during manufacture (method III), as well as anisotropy fields when the specimens are prepared in an aligning field.  相似文献   

8.
Luminescence properties of Eu3+ doped TeO2-PbO-GeO2 glasses containing gold nanoparticles (NPs) were investigated. The emission spectra of the samples exhibited enhancement of Eu3+ luminescence due to the presence of gold NPs. The emission at 614 nm, due to the Eu3+ hypersensitive transition 5D0-7F2, is much influenced by the gold NPs and increases by ≈100% for samples heat-treated at 350 °C during 41 h.  相似文献   

9.
10.
A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, (M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.
Graphical abstract
  相似文献   

11.
Schottky and Ohmic contacts are essential parts of electronic and optoelectronic devices based on semiconductor materials. Controlling the contact/semiconductor interface properties is the key to obtaining a contact with an optimum performance. Contacts incorporated by nanomaterials, i.e., nano-sized particles that are embedded at the interface of contact/semiconductor, can transform the conventional approaches of contact fabrication, resulting in more reproducible, tunable and efficient electronic, and optoelectronic devices. This article is a review of theoretical and fabrication progress on the last two decades to produce contacts with embedded nanoparticles (NPs). The review covers common routes of NPs deposition on different substrates (e.g., Si, Ge, SiC, GaN, GaAs67P33, and InP) for nanostructured contact fabrication and the theoretical models to investigate the NPs effects on the conduction mechanism and electrical properties of devices.  相似文献   

12.
Positron-lifetime experiments have been carried out on two undoped n-type liquid encapsulated Czochralski (LEC)-grown InP samples with different stoichiometric compositions in the temperature range 10-300 K. For temperatures below 120 K for P-rich InP and 100 K for In-rich InP, the positron average lifetime began to increase rapidly and then leveled off, which was associated with the charge state change of hydrogen indium vacancy complexes from (VInH4)+ to (VInH4)0. This phenomenon was more obvious in P-rich samples that have a higher concentration of VInH4. The transformation temperature of approximately 120 K suggests that the complex VInH4 is a donor defect and that the ionization energy is about 0.01 eV. The ionization of neutral VInH4 accounted for the decrease of the positron average lifetime when the sample was illuminated with a photon energy of 1.32 eV at 70 K. These results provide evidence for hydrogen complex defects in undoped LEC InP.  相似文献   

13.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

14.
Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.  相似文献   

15.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

16.
The surface effects, the (NH4)2S and low-temperature-deposited SiNx passivations of InP-based heterostructure bipolar transistors (HBTs) have been investigated. The surface recombination current of InP-based HBTs is related to the base structures. The (NH4)2S treatment for InGaAs and InP removes the natural oxide layer and results in sulfur-bonded surfaces. This can create surface-recombination-free InP-based HBTs. Degradation is found when the HBTs were exposed to air for 10 days. The low-temperature-deposited SiNx passivation of InGaAs/InP HBTs causes a drastic decrease in the base current and a significant increase in the current gain. The improvement in the HBT performance is attributed to the low deposition temperature and the effect of N2 plasma treatment in the initial deposition process. The SiNx passivation is found to be stable. S/SiNx passivation of InGaAs/InP HBTs results in a decrease in the base current and an increase in the current gain. The annealing process can cause the base current to decrease further and the current gain increase.  相似文献   

17.
Chemically disordered face-centered cubic (fcc) FePt nanoparticles (NPs) with a mean diameter of 9 nm were synthesized via pyrolysis of iron(III) ethoxide and platinum(II) acetylacetonate. The surface ligands of these NPs were then exchanged from oleic acid to tetramethylammonium hydroxide (TMAOH) to measure the longitudinal (T1) and transverse (T2) proton relaxation times of aqueous dispersion of FePt NPs. Magnetic resonance relaxometry reveals that TMAOH-capped FePt NPs have a higher T2-shortening effect than conventional superparamagnetic iron oxide NPs, indicating that fcc-phase FePt NPs might be superior negative contrast agents for magnetic resonance imaging.  相似文献   

18.
Focused ion beam physical sputtering and iodine-enhanced etching of indium phosphide (InP) were performed. Up to 15× enhanced etching rates over sputtering were measured at room temperature, due to the addition of iodine to the sputter-process. Reaction mechanisms and products are discussed and characterized. The reaction is limited by the desorption of indium triiodide (InI3) at room temperature. InI3 has to be removed by sputtering, which simultaneously amorphizes the underlying substrate. Surface roughness and stoichiometry of InP are compared for sputtering and etching. Gallium-contamination and the damaged zone in InP are significantly reduced by iodine-enhanced etching. Based on the reaction mechanisms, an optimum beam scanning strategy is proposed which allows precise microfabrication in reduced time and minimizes damage to the substrate. The method is also applicable for other halide gas etching processes of III-V semiconductors.  相似文献   

19.
The sonocatalytic degradation of EDTA (C0 = 5 10−3 M) in aqueous solutions was studied under 345 kHz (Pac = 0.25 W mL−1) ultrasound at 22–51 °C, Ar/20%O2, Ar or air, and in the presence of metallic titanium (Ti0) or core-shell Ti@TiO2 nanoparticles (NPs). Ti@TiO2 NPs have been obtained using simultaneous action of hydrothermal conditions (100–214 °C, autogenic pressure P = 1.0–19.0 bar) and 20 kHz ultrasound, called sonohydrothermal (SHT) treatment, on Ti0 NPs in pure water. Ti0 is composed of quasi-spherical particles (30–150 nm) of metallic titanium coated with a metastable titanium suboxide Ti3O. SHT treatment at 150–214 °C leads to the oxidation of Ti3O and partial oxidation of Ti0 and formation of nanocrystalline shell (10–20 nm) composed of TiO2 anatase. It was found that Ti0 NPs do not exhibit catalytic activity in the absence of ultrasound. Moreover, Ti0 NPs remain inactive under ultrasound in the absence of oxygen. However, significant acceleration of EDTA degradation was achieved during sonication in the presence of Ti0 NPs and Ar/20%O2 gas mixture. Coating of Ti0 with TiO2 nanocrystalline shell reduces sonocatalytic activity. Pristine TiO2 anatase nanoparticles do not show a sonocatalytic activity in studied system. Suggested mechanism of EDTA sonocatalytic degradation involves two reaction pathways: (i) sonochemical oxidation of EDTA by OH/HO2 radicals in solution and (ii) EDTA oxidation at the surface of Ti0 NPs in the presence of oxygen activated by cavitation event. Ultrasonic activation most probably occurs due to the local heating of Ti0/O2 species at cavitation bubble/solution interface.  相似文献   

20.
The epitaxial growth of CeO2 thin films has been realized on (100) InP substrates using reactive r.f. magnetron sputtering. Oxide films were nucleated in the presence of molecular hydrogen (4% H2/Ar sputtering gas) in order to reduce the native oxide formation on the InP surface, which interferes with CeO2 epitaxy. A metal cerium target was used as the cation source, with water vapor serving as the oxidizing species. Epitaxial films were sputter-deposited at a substrate temperature of 550 °C in a H2O vapor pressure of approximately 10-3 Torr. Crystallinity of the oxide films was examined using θ–2θ X-ray diffraction, ω-rocking curves, and in-plane φ-scans. The best results were obtained when the initial nucleation layer was deposited with P(H2O)<10-5 Torr, followed by deposition at P(H2O)=10-3 Torr. The epitaxial growth of CeO2 on InP could prove enabling in efforts to integrate functional oxides with InP-based optoelectronic and microwave technologies. Received: 20 February 20002 / Accepted: 21 February 2002 / Published online: 19 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号