首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The main aim of the present investigation was the intercalation of WS2 nanosheets in the structure of ceria (CeO2) to be used for the efficient catalytic destruction of tylosin (TYL) as a macrolide antibiotic in water. As-synthesized heterostructured catalyst was placed in a sono-reactor (40 kHz and 300 W) in order to degrade TYL through the sonocatalysis. 15 wt% WS2/CeO2 was chosen for performing the systematic experiments. Decreasing the concentration of TYL, along with increasing the WS2/CeO2 dosage led to reduced degradation efficiency. The water hardness was demonstrated to be a suppressive agent on the sonocatalysis of the target pollutant. As-generated holes, OH, and also O2 were responsible for the degradation of TYL. Increasing the ultrasound power and operating temperature enhanced the degradation efficiency. The degradation rate boosted up when the temperature was raised from 10 °C (0.0107 1/min) to 40 °C (0.0165 1/min). Moreover, the lowest activation energy (Ea) for sonocatalytic degradation was obtained as 10.81 kJ/mol. The sonocatalytic activity of WS2/CeO2 in the sono-reactor encountered insignificant change within five consecutive operational runs (~15% reduction). The mechanism and pathways of the sonocatalytic decomposition of TYL are also proposed.  相似文献   

2.
Reactive electrochemical membrane (REM) allows electrochemical oxidation (EO) water purification under flow-through operation, which improves mass transfer on the anode surface significantly. However, O2 evolution reaction (OER) may cause oxygen bubbles to be trapped in small-sized confined flow channels, and thus degrade long-term filterability and treatability of REM. In this study, ultrasound (ultrasonic vibrator, 28 kHz, 180 W) was applied to EO system (i. e. sonoelectrochemistry) containing titanium suboxide-REM (TiSO-REM) anode for enhanced oxidation of 4-chlorophenol (4-CP) target pollutant. Both experimental and modeling results demonstrated that ultrasound could mitigate the retention of O2 bubbles in the porous structures by destructing large-size bubbles, thus not only increasing permeate flux but also promoting local mass transfer. Meanwhile, oxidation rate of 4-CP for EO with ultrasound (EO-US, 0.0932 min−1) was 216% higher than that for EO without ultrasound (0.0258 min−1), due to enhanced mass transfer and OH production under the cavitation effect of ultrasound. Density functional theory (DFT) calculations confirmed the most efficient pathway of 4-CP removal to be direct electron transfer of 4-CP to form [4-CP]+, followed by subsequent oxidation mediated by OH produced from anodic water oxidation on TiSO-REM anode. Last, the stability of TiSO-REM could be improved considerably by application of ultrasound, due to alleviation of electrode deactivation and fouling, indicated by cyclic test, scan electron microscopy (SEM) observation and Fourier transform infrared spectroscopy (FT-IR) characterization. This study provides a proof-of-concept demonstration of ultrasound for enhanced EO of recalcitrant organic pollutants by REM anode, making decentralized wastewater treatment more efficient and more reliable.  相似文献   

3.
Zinc oxide NPs were synthesized solvothermally within sonochemical mediation and characterized by XRD, FTIR, SEM, EDX, elemental mapping, TEM and UV–vis. spectrophotometry. To evaluate the hydroxyl radicals (OH) scavenging activity of arils extract of Egyptian (EGY-PAM) and Yemeni Punica granatum (YEM-PAM), the developed zinc oxide nano particles (ZnO NPs) as a highly productive source of hydroxyl radicals (under Solar-illumination) was used. The yield of OH was trapped and probed via fluorimetric monitoring. This suits the first sensitive/selective photoluminescent avenue to evaluate the OH scavenging activity. The high percentage of DPPH radical scavenging reflected higher contents of phenolics, flavonoids, and anthocyanins that were found in EGY-PAM and YEM-PAM. Although, some secondary metabolites contents were significantly different in EGY-PAM and YEM-PAM, the traditional DPPH radical scavenging methodology revealed insignificant IC50. Unlike, the developed fluorimetric probing, sensitively discriminated the OH scavenging activity with IC50 (105.7 µg/mL) and lower rate of OH productivity (k = 0.031 min−1) in case of EGY-PAM in comparison to IC50 (153.4 µg/mL) and higher rate of OH productivity (k = 0.053 min−1) for YEM-PAM. Our findings are interestingly superior to the TBHQ that is synthetic antioxidant. Moreover, our developed methodology for fluorimetric probing of OH radicals scavenging, recommends EGY-PAM as OH radicals scavenger for diabetic patients while YEM-PAM exhibited a better OH radicals scavenging appropriate for high blood pressure patients. More interestingly, EGY-PAM and YEM-PAM exhibited high anticancer potentiality. The aforementioned OH and DPPH scavenging activities as well as the anticancer potentiality present EGY-PAM and YEM-PAM as promising sources of natural antioxidants, that may have crucial roles in some chronic diseases such as diabetics and hypertension in addition to cancer therapeutic protocols.  相似文献   

4.
Numerical simulations have been performed on a range of ambient bubble radii, in order to reveal the effect of mass transport, heat exchange and chemical reactions heat on the chemical bubble yield of single acoustic bubble. The results of each of these energy mechanisms were compared to the normal model in which all these processes (mass transport, thermal conduction, and reactions heat) are taken into account. This theoretical work was carried out for various frequencies (f: 200, 355, 515 and 1000 kHz) and different acoustic amplitudes (PA: 1.5, 2 and 3 atm). The effect of thermal conduction was found to be of a great importance within the bubble internal energy balance, where the higher rates of production (for all acoustic amplitudes and wave frequencies) are observed for this model (without heat exchange). Similarly, the ignorance of the chemical reactions heat (model without reactions heat) shows the weight of this process into the bubble internal energy, where the yield of the main species (OH, H, O and H2) for this model was accelerated notably compared to the complete model for the acoustic amplitudes greater than 1.5 atm (for f = 500 kHz). However, the lowest production rates were registered for the model without mass transport compared to the normal model, for the acoustic amplitudes greater than 1.5 atm (f = 500 kHz). This is observed even when the temperature inside bubble for this model is greater than those retrieved for the other models. On the other hand, it has been shown that, at the acoustic amplitude of 1.5 atm, the maximal production rates of the main species (OH, H, O and H2) for all the adopted models appear at the same optimum ambient-bubble size (R0 ~ 3, 2.5 and 2 µm for, respectively, 355, 500 and 1000 kHz). For PA = 2 and 3 atm (f = 500 kHz), the range of the maximal yield of OH radicals is observed at the range of R0 where the production of OH, O and H2 is the lowest, which corresponds to the bubble temperature at around 5500 K. The maximal production rate of H, O and H2 is shifted toward the range of ambient bubble radii corresponding to the bubble temperatures greater than 5500 K. The ambient bubble radius of the maximal response (maximal production rate) is shifted toward the smaller bubble sizes when the acoustic amplitude (wave frequency is fixed) or the ultrasound frequency (acoustic power is fixed) is increased. In addition, it is observed that the increase of wave frequency or the acoustic amplitude decrease cause the range of active bubbles to be narrowed (scenario observation for the four investigated models).  相似文献   

5.
Hydrodynamic cavitation (HC) and Fe(II) are advanced oxidation processes, in which pentachlorophenol (PCP) is treated by the redox method of activating persulfate (PS). The kinetics and mechanism of the HC and Fe(II) activation of PS were examined in aqueous solution using an electron spin resonance (ESR) spin trapping technique and radical trapping with pure compounds. The optimum ratio of Fe(II)/PS was 1:2, and the hydroxyl radical (HO) and sulfate radical (SO4) generation rate were 5.56 mM h−1 and 8.62 μM h−1, respectively. The generation rate and Rct of HO and SO4 at pH 3 and 50 °C in the Fe(II)/PS/HC system are 7584.6 μM h−1, 0.013 and 24.02 μM h−1, 3.95, respectively. The number of radicals was reduced as the pH increased, and it increased with increasing temperature. The PCP reaction rate constants was 4.39 × 10−2 min−1 at pH 3 and 50 °C. The activation energy was 10.68 kJ mol−1. In addition, the mechanism of PCP treatment in the Fe(II)/PS/HC system was a redox reaction, and the HO/SO4 contribution was 81.1 and 18.9%, respectively. In this study, we first examined PCP oxidation through HO and SO4 quantification using only the Fe(II)/PS/HC process. Furthermore, the results provide the foundation for activation of PS by HC and Fe(II), but also provide a data basis for similar organic treatments other than PCP.  相似文献   

6.
In this study, 0.6Ag3PO4/CoWO4 composites were synthesized by hydrothermal method. The prepared materials were systematically characterized by techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, and UV–vis diffuse reflectance spectrum (DRS). Furthermore, the sonocatalytic degradation performance of 0.6Ag3PO4/CoWO4 composites towards tetracycline (TC) was investigated under ultrasonic radiation. The results showed that, combined with potassium persulfate (K2S2O8), the 0.6Ag3PO4/CoWO4 composites achieved a high sonocatalytic degradation efficiency of 97.89 % within 10 min, which was much better than bare Ag3PO4 or CoWO4. By measuring the electrochemical properties, it was proposed that the degradation mechanism of 0.6Ag3PO4/CoWO4 is the formation of S-scheme heterojunction, which increases the separation efficiency of electron-hole pairs (e--h+) and generates more electrons and holes, thereby enhancing the degradation activity. The scavenger experiments confirmed that hole (h+) was the primary active substance in degrading TC, and free radicals (OH) and superoxide anion radical (O2) were auxiliary active substances. The results indicated that 0.6Ag3PO4/CoWO4 nanocomposites could be used as an efficient and reliable sonocatalyst for wastewater treatment.  相似文献   

7.
The electrochemiluminescence (ECL) of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) in the presence of lidocaine was investigated under ultrasound (US) irradiation. The sonoelectrochemical experiments are conducted by indirect irradiation of ultrasound with a piezoelectric transducer operating at 430 kHz. In a supporting electrolyte at pH 11, the Ru(bpy)32+/lidocaine system gave weak ECL peaks around +1.2 V and +1.45 V, respectively. The ECL signal at +1.2 V was attributed to redox reactions of the oxidative intermediates of Ru(bpy)32+ and lidocaine, while the signal at +1.45 V was assumed to be caused by an advanced oxidation process due to the generation of hydroxyl radicals (OH) at the electrode surface. In this study, the potential modulation approach is employed in the study of ECL process upon US irradiations because it can suppress the noise components from sonoluminescence effectly and improve the resolution of ECL-potential profiles. It is found ECL signals were greatly enhanced upon US irradiation at the output power of 30 W, however, the relative intensity of ECL signal at +1.2 V was larger than that obtained with a rotating disk electrode even though the mass transport effect is equilvalent. The experiment results suggest that the chemical effect (i.e., generation of OH) by 430 kHz US becomes remarkable in the electrochemical process. Detailed ECL reaction routes under US are proposed in this study.  相似文献   

8.
As an advanced oxidation process with a wide range of applications, sonochemistry relies on acoustic cavitation to induce free radicals for degrading chemical contaminants. The complete process includes two critical steps: the radical production inside the cavitation bubble, and the ensuing dispersion of these radicals into the bulk solution. To grasp the physicochemical details in this process, we developed an integrated numerical scheme with the ability to quantitatively describe the radical production-dispersion behavior. It employs coupled simulations of bubble dynamics, intracavity chemical reactions, and diffusion–reaction-dominated mass transport in aqueous solutions. Applying this method to the typical case of argon and oxygen bubbles, the production mechanism for the main radicals is revealed. Moreover, the temporal-spatial distribution of the radicals in the liquid phase is presented. The results demonstrate that the enhanced radical production observed in oxygen bubbles can be traced to the initiation reaction O2 + H2O → OH+HO2, which requires relatively low activation energy. In the outside liquid region, the dispersion of radicals is limited by robust recombination reactions. The simulated penetration depth of OH is around 0.2 μm and agrees with reported experimental measurements. The proposed numerical approach can be employed to better capture the radical activity and is instrumental in optimizing the engineering application of sonochemistry.  相似文献   

9.
Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO2 NPs activated by external ultrasound irradiation (called TiO2/US treatment). The present study first examined the uptake behavior of TiO2 NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24 h. It took 6 h for sufficient uptake of the TiO2 NPs by the cells. Next, the effect of the TiO2/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm2, 30 s) to the cells which incorporated the TiO2 NPs. Apoptosis was observed at 6 h after the TiO2/US treatment. Although no apparent cell-injury was observed until 24 h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO2/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO2 (0.1 mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm2 for 60 s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions.  相似文献   

10.
In light of growing environmental concerns over emerging contaminants in aquatic environments, antibiotics in particular, have prompted the development of a new generation of effective sonocatalytic systems. In this study, a new type of nano-laminated material, Ti2SnC MAX phase, is prepared, characterized, and evaluated for the sonocatalytic degradation of oxytetracycline (OTC) antibiotic. A variety of identification analyses, including X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, Brunauer-Emmett-Teller, and diffuse reflectance spectroscopy, were conducted to determine the physicochemical properties of the synthesized catalyst. By optimizing the operating factors, total degradation of OTC occurs within 120 min with 1 g L-1 catalyst, 10 mg L-1 OTC, at natural pH of 7.1 and 150 W ultrasonic power. The scavenger studies conclude that the singlet oxygen and superoxide ions are the most active species during the sonocatalytic reaction. Based on the obtained data and GC–MS analysis, a possible sonocatalytic mechanism for the OTC degradation in the presence of Ti2SnC is proposed. The catalyst reusability within eight consecutive runs reveals the proper stability of Ti2SnC MAX phase. The results indicate the prospect for MAX phase-based materials to be developed as efficient sonocatalysts in the treatment of antibiotics, suggesting a bright future for the field.  相似文献   

11.
In this work, after exploring the first report on the synergism of combining ultrasound (US: 600 kHz) and chlorine toward the degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, the impact of various mineral water constituents (Cl, SO42−, NO3, HCO3 and NO2) and natural organic matter, i.e., humic acid (HA), on the performance of the US/chlorine sono-hybrid process was assessed for the first time. Additionally, the process effectiveness was evaluated in a real natural mineral water (NMW) of a known composition. Firstly, it was found that the combination of ultrasound and chlorine (0.25 mM) at pH 5.5 in cylindrical standing wave ultrasonic reactor (f = 600 kHz and Pe = 120 W, equivalent to PA ∼ 2.3 atm) enhanced in a drastic manner the degradation rate of ARAC; the removal rate being 320% much higher than the arithmetic sum of the two separated processes. The source of the synergistic effect was attributed to the effective implication of reactive chlorine species (RCS: Cl, ClO and Cl2) in the degradation process. Radical probe technique using nitrobenzene (NB) as a specific quencher of the acoustically generated hydroxyl radical confirmed the dominant implication of RCS in the overall degradation rate of ARAC by US/chlorine system. Overall, the presence of humic acid and mineral anions decreased the efficiency of the sono-hybrid process; however, the inhibition degrees depend on the type and the concentration of the selected additives. The reaction of these additives with the generated RCS is presumably the reason for the finding results. The inhibiting effect of Cl, SO42−, NO3 and NO2 was more pronounced in US/chlorine process as compared to US alone, whereas the inverse scenario was remarked for the effect of HA. These outcomes were associated to the difference in the reactivity of HA and mineral anions toward RCS and OH oxidizing species, in addition to the more selective character of RCS than hydroxyl radical. The displacement of the reaction zone with increasing the additive concentration may also be another influencing factor that favors competition reactions, which subsequently reduce the available reactive species in the reacting medium. The NMW exerted reductions of 43% and 10% in the process efficiency at pH 5.5 and 8, respectively, thereby confirming the RCS-quenching mechanism by the water matrix constituents. Hence, this work provided a precise understanding of the overall mechanism of chlorine activation by ultrasound to promote organic compounds degradation in water.  相似文献   

12.
The effects of air sparging (0–16 L min−1) and mechanical mixing (0–400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased → increased exponentially → decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min−1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.  相似文献   

13.
Coupling ultrasound with other remediation technologies has potential to result in synergistic degradation of contaminants. In this work, we evaluated synergisms from adding high-power ultrasound (20 kHz; 250 W) to activated persulfate over a range of bulk temperatures (20–60 °C). We studied the aqueous degradation kinetics of three polycyclic aromatic hydrocarbons (PAHs: naphthalene, phenanthrene, and fluoranthene) treated by ultrasound-alone, heat-activated persulfate, and combined ultrasonically-activated persulfate (US-PS). At 20 °C, observed US-PS rate constants strongly correlated with Wilke-Chang diffusion coefficients. This correlation indicates PAH molecules diffuse to the bubble-water interface prior to reaction with sulfate radicals (SO4) generated at the interface. At higher temperatures, observed US-PS rate constants appear to be a more complicated function of temperature and diffusion coefficients. Synergy indexes for PAHs with fast diffusion coefficients were greatest at 20 °C. Fluoranthene, the largest and most hydrophobic PAH, had a maximum synergy index at 30 °C; it benefited from additional thermal persulfate activation in bulk solution. Fluoranthene synergy indexes, however, decreased above 30 °C and became antagonistic at 60 °C. Electron paramagnetic resonance (EPR) spin trapping was used to quantify hydroxyl radical (OH) produced from acoustic cavitation in the absence of persulfate. These data showed consistent OH production from 20 to 60 °C, indicating PAH antagonisms at 60 °C were not due to lower bubble collapse temperatures. Instead, the results suggest that PAH antagonisms are caused by increased radical–radical recombination as bulk temperature increases. In effort to develop an efficient, combined remediation technology, this work suggests bulk temperatures between 20 and 40 °C maximize US-PS synergisms.  相似文献   

14.
Zinc tungstate (ZnWO4) was previously used as a photocatalyst. In this paper, for the first time as an sonocatalyst, the performance of ZnWO4 for sonocatalytic degradation of meloxicam (MEL) under ultrasonic irradiation were studied. Firstly, ZnWO4 nanomaterials were synthesized at different acidity (pH = 5, 6, 7, 8, 9) via the hydrothermal method. Utilizing SEM, XRD and EDS techniques to characterize composition and morphology of each product, the same crystal forms, but different morphologies (nano-sheet, nano-microspheres or nano-rod) of ZnWO4 could be obtained. Secondly, the sonocatalytic activities of ZnWO4 on degradation of MEL were studied. It was found that the degradation ratio varied with the synthetic pH values, with ZnWO4 under synthetic pH = 6 exhibiting the best sonocatalytic performance (75.7%). While being synthesized at this pH value, ZnWO4 nano-microspheres had the largest BET surface area (27.068 m2/g), the smallest particle size (40–60 nm) so as to provide more active sites on its surface, which were able to produce more reactive oxygen species (ROS) and holes under ultrasonic irradiation. These ROS and holes had a positive effect on the degradation of MEL into CO2, H2O and inorganic. Thirdly, various influential factors including ultrasonic power intensity, ultrasonic time, catalyst addition dosage, initial concentration of MEL solution and reusability of catalyst were also explored. Under the condition of 10 mg/L MEL concentration, 20 mg catalyst dosage, 120 min irradiation time, 0.278 W/cm2 ultrasonic power intensity, the degradation ratio on MEL reached 75.7%. Finally, the presence of hydroxyl radical (OH) and singlet molecular oxygen (1O2) in the reaction was confirmed by adding ROS scavenger. The experimental results suggested that ZnWO4 nanoparticle could be used not only as an effective photocatalyst, but also, under the condition of ultrasonic irradiation, a promising sonocatalyst for degradation of organic pollutants in aqueous media.  相似文献   

15.
Metallic molybdenum was deposited by magnetron sputtering on amorphous and (110) rutile TiO2 substrates. An interfacial reaction between the deposited Mo and the TiO2 substrates generating Ti3 +, Ti2 + oxidation states is evidenced by X-ray photoelectron spectroscopy. Our XPS data suggest, as compared to the (110) rutile substrate, a higher reactivity of the amorphous TiO2 leading to a stronger Mo oxidation. In both cases, this reaction, leads to the formation of MoOx nanostructures at the interfaces. The growth mechanism of the Mo deposit as a function of the crystalline constitution of the TiO2 substrate was analyzed by processing the XPS data using the Quases ® software. The data reveal a layer-by-layer growth of the Mo deposit on the (110) rutile substrate and a Stranski–Krastanov growth on the amorphous one. We explain these different growth modes based on the TiO2 surface reactivity and electronic structure using the Cabrera–Mott theory. This explanation is supported by Time-of-Flight Secondary Ion Mass spectrometry profiling.  相似文献   

16.
We have discovered a selective and efficient method for the synthesis of previously unknown 1,9-(1′,4′-oxathiano)-1,9-dihydro-(C60-Ih)[5,6]fullerene, a compound with the direct attachment of the sulfur atom to the fullerene core. The method is based on the reaction of C60 with 1,2-hydroxythiols in the presence of inorganic bases in air under ultrasonication. The significance of ultrasound has been exemplified with the comparative conventional methods. The title compound has been identified with mass-(MALDI TOF/TOF), one- and two-dimensional NMR 1H and 13C (COSY, HSQC, HMBS), IR, UV–Vis spectroscopic techniques. Using the direct EPR method, we have detected radical anion C60 (g = 2.0046 and ΔH = 2 G) as a key reaction intermediate of the sonochemical reaction. Based on the experimental results and quantum chemical calculations, we have proposed a mechanism for the conversion of C60 and 2-mercaptoethanol to the C60–1,4-oxathiane adduct.  相似文献   

17.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

18.
In this work, as a new strategy, ultrasound/H2O2/MOF system was firstly applied by environmental-benign Fe-MOFs (MIL-53, MIL-88B and MIL-101) for tetracycline hydrochloride removal. The synthetic Fe-MOFs were characterized by XRD, FTIR, SEM, XPS, N2 sorption-desorption isotherms and CO-FTIR. MIL-88B demonstrated the best catalytic performance because of its highest amount of Lewis acid sites. Influencing factors, contrast experiment, and corresponding dynamics were carried out to obtain the best experimental conditions and reaction system. Under optimal conditions ([Tetracycline hydrochloride] = 10 mg/L, [MIL-88B] = 0.3 g/L, [H2O2] = 44 mM, [ultrasound power] = 60 W, and pH = 5.0), the-first-order kinetic rate constant k was calculated to be 0.226 min−1, higher than the simple combination of the ultrasound system (0.004) and MIL-88B/H2O2 system (0.163), indicating the importance of synergistic effect between ultrasound and Fenton reaction. EPR test and quenching experiment proved that ·OH is mainly responsible for tetracycline hydrochloride removal. The major reaction path is the adsorption and decomposition of H2O2 by coordinative unsaturated iron sites on Fe-MOF, but it is not the only path. The direct decomposition of H2O2 and the cavitation effect caused by ultrasound also contribute to the generation of OH.  相似文献   

19.
A promising approach of ultrasound assisted oxidative desulfurization (UAOD) was studied for deep desulfurization of simulated sulphated turpentine containing dimethyl disulphide (DMDS) as model pollutant. The effect of ultrasound parameters such as power (80–120 W) and duty cycle (50–80%) as well as operating conditions as initial concentration (50–100 ppm), volume (100–300 ml) and temperature (28 °C as ambient condition, 50–70 °C) on the extent of desulfurization have been studied. The effect of addition of various oxidizing agents such as hydrogen peroxide over the range of 3–18 g/L, Fenton reagent by varying FeSO4 loading from 0.75 g/L to 1.75 g/L at constant H2O2 loading and titanium dioxide (loading over the range 1–4 g/L) in the presence of ultrasonic horn have also been investigated at laboratory scale. The addition of oxidizing agents in presence of ultrasound enhanced the extent of DMDS removal. The extent of desulfurization was found to be remarkably low for individual approaches as compared to combination approaches of US/oxidizing agents. The kinetic analysis revealed that oxidation follows first order kinetics. A significant increase in cavitational yield was observed for combination approach of US/H2O2/TiO2 (5.78 × 10−9 g/L) compared to individual ultrasound approach (2.04 × 10−9 g/L). Under best conditions of 120 W power, 70% duty cycle, 50 ppm initial concentration, 15 g/L H2O2 loading and 4 g/L TiO2 loading, 100% desulfurization was obtained at 23.19 Rs/L as the treatment cost. Based on the obtained results it can be concluded that US/H2O2/TiO2 approach is highly efficient desulfurization technique for deep desulfurization of simulated sulphated turpentine.  相似文献   

20.
Oxygen-vacant titanium dioxide (TiO2−x ) nanoparticles were synthesized using thermal plasma as a heating source at various applied plasma currents and He/Ar ratios. Samples with diverse characteristics were developed and the mercury removal effectiveness was subsequently evaluated. TiO2 nanoparticles possessing high purity and uniform particle sizes were successfully synthesized using metal titanium and O2 as precursors and Ar as plasma gas. TiO2−x in anatase phase with a particle size at 5–10 nm was formed at the He/Ar volume ratio of 25/75. Further increasing the He/Ar ratio elevated the plasma temperature, causing the tungsten to melt, vaporize from the cathode, and then dope into the formed TiO2 nanoparticles. The doped W appeared to inhibit the growth of nanoparticles and decrease the crystallinity of formed anatase. The effectiveness of oxygen-vacant sites on Hg0 removal under the visible light circumstance was confirmed. Hg0 removal by the TiO2−x nanoparticles was enhanced by increasing the O2 concentration. However, moisture reduced Hg0 capture, especially when light irradiation was applied. The reduction in Hg0 capture may be resulted from the competitive adsorption of H2O on the active sites of TiO2−x with Hg0 and transformed Hg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号