首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Simultaneous LEED and AES are used to follow early stages of oxidation of monocrystalline FeCr(100) and (110) between 700 and 900 K in the oxygen pressure range 10?9–10?6 Torr. A chromium-rich oxide region at the alloy/oxide interface is observed, which exhibits different surface structures on oxidized FeCr(100) and FeCr(110). The chromium concentration in this initially formed oxide film is found to be enhanced by low oxygen pressures or high temperatures. During further oxidation different behaviours are observed on FeCr(100) and FeCr(110), which are explained by assuming different ion permeabilities through the initial chromium rich oxide regions on the two surface planes. On FeCr(110) surfaces oxidation is initiated on chromium enriched (100) facets at 800 K or below. At 900 K a film consisting of rhombohedral Cr2O3 or (Fe, Cr)2O3 is epitaxially growing with its (001) plane parallel to the alloy (110) face. On FeCr(100) surfaces the chromium rich oxide region next to the substrate is of fcc type. As soon as the diffusion of iron from the alloy to the gas/oxide interface is observable, a spinel type oxide is formed and connected with the location of iron in tetrahedral lattice sites. Closer to the fcc lattice the spinel oxide consists of FeCr2O4 or a solid solution of FeCr2O4 and Fe3O4 whereas next to the gas phase the oxide is pure Fe3O4.  相似文献   

2.
The adsorption of Na and the coadsorption of Na and O2 on Ag(110) have been studied by LEED, thermal desorption, and Auger spectroscopy. For Na coverages in the regime 0 < θNa < 2 the Na desorption spectra show a single peak (β) corresponding to a desorption energy of ~195 kJ mol?1, and at θNa ~ 2 a (1 × 2) LEED pattern appears. At still higher coverages (2 < θNa < 5), a (1 × 3) surface phase is formed, and a new peak (α) appears in the desorption spectra; this is identified with Na desorption from an essentially Na surface. The desorption energy of αNa (~174 kJ mol?1) indicates that Na adatoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The initial sticking probability of O2 on Na-dosed Ag(110) is enormously enhanced over the clean surface value, being of the order of unity, and O2 chemisorption ultimately leads to a (4 × 1) surface structure. The presence either subsurface Na alone, or of both Na and O below the surface, causes substantial changes in surface behaviour. In the former case, submonolayer doses of Na lead to the appearance of a (1 × 2) structure; and in the latter case, Na + O2 coadsorption results in a c(4 × 2) structure. Auger spectroscopy indicates that the Ag(110)-c(4 × 2)NaO phase forms with a constant stoichiometry which is independent of the initial Na dose. The Na:O ratio in this adlayer is believed to be of the order of unity. The structures of the various ordered phases, the nature of the AgNa bonding, and the interatomic spacing between the alkali adatoms on Ag(110) are discussed.  相似文献   

3.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

4.
J.H. Dai  Y. Song  R. Yang 《Surface science》2011,605(13-14):1224-1229
First principle calculations have been performed to explore the adsorption characteristics of water molecule on (001) and (110) surfaces of magnesium hydride. The stable adsorption configurations of water molecule on the surfaces of MgH2 were identified by comparing the total energies of different adsorption states. The (110) surface shows a higher reactivity with H2O molecule owing to the larger adsorption energy than the (001) surface, and the adsorption mechanisms of water molecule on the two surfaces were clarified from electronic structures. For both (001) and (110) surface adsorptions, the O p orbitals overlapped with the Mg s and p orbitals leading to interactions between O and Mg atoms and weakening the O–H bonds in water molecule. Due to the difference of the bonding strength between O and Mg atoms in the (001) and (110) surfaces, the adsorption energies and configurations of water molecule on the two surfaces are significantly different.  相似文献   

5.
The double systems BaORe (0001) and OBaRe (0001) have been investigated by LEED and contact potential difference techniques. It is shown that the diffraction patterns in both cases were identical to those obtained for BaO films on the (0001) Re face described in the preceding paper. The analysis of the changes of the work function during the deposition of barium on an oxygen covered substrate suggests the existence of two phase adsorption of oxygen on that crystal face. The results obtained are compared with data for double LiOW (110) and NaOW (112) systems.  相似文献   

6.
《Surface science》1996,366(2):L724-L728
Infrared-visible sum frequency generation (SFG) spectroscopy is applied to the study of structures of adsorbed formate and formic acid on the Ni(110) surface. Vibrational resonance by the CH stretching band of formate was observed at 2948 cm−1 for p-polarized visible and infrared lights. Adsorption of formic acid on the formate-covered Ni(110) surface gave SFG peaks at 2968 and 2900 cm−1 for both p- and s-polarized visible and p-polarized infrared light. These peaks were assigned to the CH and OH stretching modes, respectively. The orientation of the CH axis of adsorbed formate and formic acid is discussed.  相似文献   

7.
Electron energy loss spectroscopy has demonstrated the existence of both a monodentate and a symmetric bidentate bridging formate as stable intermediates in the decomposition of formic acid on the Ru(001) surface. The monodentate formate converts upon heating to the bidentate formate which decomposes via two pathways: CH bond cleavage to yield CO2 and adsorbed hydrogen; and CO bond cleavage to yield adsorbed hydrogen, oxygen and CO. Thermal desorption spectra demonstrate the evolution of H2,H2O, CO and CO2 as gaseous products of the decomposition reaction. The observation of this product distribution from Ru(100), Ni(100) and Ni(110) had prompted the proposal of a formic anhydride intermediate, the existence of which is rendered questionable by the spectroscopic results reported here.  相似文献   

8.
Local chemisorption geometries of formate (HCO2) and methoxy (CH3O) groups on Cu(100) were examined by means of surface extended (SEXAFS) and near-edge X-ray absorption fine structure (NEXAFS) measurements above the O K edge. At 300 K the oxygen of the formate group are equivalent and asymmetrically located near the four-fold hollow site yielding two CuO distances between 2.31 and 2.45 Å. These distances are at least 0.3 Å longer than typical CuO distances of surface and bulk compounds due to a Cu-C steric interaction. The CO bonds and the OCO angle of the formate are estimated to be 1.27 ± 0.04 A? and 127 ± 7°, respectively. At 200 K the methoxy group has a CuO distance of 1.97 ± 0.05 A? and the CO axis is tilted with respect to the surface normal. The exact chemisorption site of the methoxy goup could not be determined, but the atop site is ruled-out.  相似文献   

9.
Hydrogen adsorption on Ni-rich (110) CuNi alloy surfaces has been studied by means of thermal desorption spectroscopy. After adsorption near room temperature the hydrogen desorption spectra exhibit a coverage dependence similar to that known from pure (110)Ni. Besides a slightly composition dependent desorption energy the alloy surfaces behave like a (110)Ni surface diluted by practically inert Cu. These results are compared to those reported by Yu Ling and Spicer.  相似文献   

10.
The influence of surface enhanced covalency on the Madelung potential is experimentally investigated using angle-resolved photoemission for (100), (110) and (111) SrTiO3 surfaces after annealing in UHV at 630 °C. Deconvolution of the core level spectra (O 1s, Sr 3d and Ti 2p) distinguishes bulk and surface components, which are interpreted in terms of surface enhanced covalency (SEC). By comparing the experimentally measured binding energies with theoretical calculations developed in the framework of the Localized-Hole Point-Ion Model, we quantitatively determine the effective electron occupancy at bulk and surface Sr and Ti sites. Our results confirm the essentially ionic character of Sr–O bond and the partially covalent character of Ti–O bond in bulk STO. The cation Ti and Sr electron occupation is greater for all the three surfaces than in the bulk. Surface covalency shifts the Madelung potential at the surface by ΔEM. ΔEM is a minimum for the (111) surface, and increases through (100), attaining a maximum for (110). The angle-resolved valence band spectra and the work function values also confirm this trend. The results are consistent with dd charge fluctuations dominating at the surface, whereas metal-ligand charge transfers are more energetically favourable in the bulk.  相似文献   

11.
High resolution electron energy loss vibrational spectroscopy was used to study the intermediate formed in the dehydration reaction for formic acid on Ni(110) and Ni(110)(4 × 5)C. On the carbided surface only the formate was observed. The frequencies of the asymmetric and symmetric OCO sketch indicated a monodentate configuration. On the clean surface a mixed adlayer of CO and HCOO formed. No losses expected for formic anhydride were observed. Lateral interactions between CO and HCOO appear to be responsible for the autocatalytic decomposition of the formate.  相似文献   

12.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101&#x0304;1).  相似文献   

13.
Surface species formed on Cu2O and CuO substrates, which have been immersed in aqueous benzotriazole (BTA), have been characterized using X-ray photoelectron spectroscopy (XPS or ESCA). Copper(2p), (3d) and nitrogen(1s) spectra indicate that a 3-minute immersion of a Cu2O substrate in aqueous BTA (0.017 M, pH 5.25, 60°C) results in the formation of both Cu+BTA and Cu2+BTA surface compounds while neither of these species are formed on CuO substrates treated in the same manner. The immersion of CuO in aqueous BTA for times greater than ~ 4 hours does, however, result in the formation of a Cu2+BTA surface compound. Copper(2p) spectra of Cu2O substrates which have been immersed in aqueous BTA for varying periods of time indicate that the Cu+BTA surface compound is formed initially and is gradually oxidized to the Cu2+BTA surface compound as the immersion time in aqueous BTA is increased. Copper(2p) and (3d) spectra, along with published electron escape depth information, indicate that the Cu+BTA films, initially formed on Cu2O surfaces during 3-minute immersions, are at least ~ 15 ± 7 Å thick whereas the Cu2+BTA films, formed by surface oxidation, grow to a maximum thickness of less than ~ 7 ± 3 Å for immersion times of ? 24 hours.  相似文献   

14.
The chemisorption of NO on clean and Na-dosed Ag(110) has been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption into the α-state occurs at 300 K with an initial sticking probability of ~0.1, and the surface is saturated at a coverage of about 125. Desorption occurs without decomposition, and is characterised by an enthalpy of Ed ~104 kJ mol?1 — comparable with that for NO desorption from transition metals. Surface defects do not seem to play a significant role in the chemistry of NO on clean Ag, and the presence of surface Na inhibits the adsorption of αNO. However, in the presence of both surface and subsurface Na, both the strength and the extent of NO adsorption are markedly increased and a new state (β1NO) with Ed ~121 kJ mol?1 appears. Adsorption into this state occurs with destruction of the Ag(110)-(1 × 2)Na ordered phase. Desorption of β1NO occurs with significant decomposition, N2 and N2O are observed as geseous products, and the system's behaviour towards NO resembles that of a transition metal. Incorporation of subsurface oxygen in addition to subsurface Na increases the desorption enthalpy (β2NO), maximum coverage, and surface reactivity of NO still further: only about half the adsorbed layer desorbs without decomposition. The bonding of NO to Ag is discussed, and comparisons are made with the properties of α and βNO on Pt(110).  相似文献   

15.
《Current Applied Physics》2015,15(11):1303-1311
Spin-polarized density functional theory calculations were performed to investigate the magnetism of bulk and Cu2O surfaces. It is found that bulk Cu2O, Cu/O-terminated Cu2O(111) and (110) surfaces have no magnetic moment, while, the O-terminated Cu2O(100) and polar O-terminated Cu2O(111) surfaces have magnetism. For low index surfaces with cation and anion vacancy, we only found that the Cu vacancy on the Cu2O(110) Cu/O-terminated surface can induce magnetism. For atomic and molecular oxygen adsorption on the low index surfaces, we found that atomic and molecular oxygen adsorption on the Cu-terminated Cu2O(110) surface is much stronger than on the Cu/O-terminated Cu2O(111) and Cu-terminated Cu2O(100) surfaces. More interesting, O and O2 adsorption on the surface of Cu/O terminated Cu2O(111) and O2 adsorption on the Cu-terminated Cu2O(110) surface can induce weak ferromagnetism. In addition, we analysis origin of Cu2O surfaces with magnetism from density of state, the surface ferromagnetism possibly due to the increased 2p–3d hybridization of surface Cu and O atoms. This is radically different from other systems previously known to exhibit point defect ferromagnetism, warranting a closer look at the phenomenon.  相似文献   

16.
通过高分辨的扫描隧道显微术研究并比较了金红石型TiO2(110)-(1×1)和锐钛矿型TiO2(001)-(1×4)两种表面的活性位点. 在金红石型TiO2(110)-(1×1)表面, 观察到氧空位缺陷是O2和CO2分子的活性吸附位点,而五配位的Ti原子是水分子和甲醇分子的光催化反应活性位点.在锐钛矿型TiO2(001)-(1×4)表面,观察到完全氧化的表面,Ti原子更可能是六配位的,H2O和O2分子均不易在这些Ti原子上吸附.经还原后表面出现富Ti的缺陷位点, 这些缺陷位点对H2O和O2分子表现出明显的活性. 锐钛矿型TiO2(001)-(1×4)表面的吸附和反应活性并不具有很高的活性,某种程度上其表现出的活性似乎低于金红石型TiO2(110)-(1×1)表面.  相似文献   

17.
Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), electron energy loss (ELS) and ultraviolet photoemission spectroscopies (UPS) were used to study the structures, compositions and electron state distributions of clean single crystal faces of titanium dioxide (rutile). LEED showed that both the (110) and (100) surfaces are stable, the latter giving rise to three distinct surface structures, viz. (1 × 3), (1 × 5) and (1 × 7) that were obtained by annealing an argon ion-bombarded (100) surface at ~600,800 and 1200° C respectively. AES showed the decrease of the O(510 eV)Ti(380 eV) peak ratio from ~1.7 to ~1.3 in going from the (1 × 3) to the (1 × 7) surface structure. Electron energy loss spectra obtained from the (110) and (100)?(1 × 3) surfaces are similar, with surface-sensitive transitions at 8.2, 5.2 and 2.4 eV. The energy loss spectrum from an argon or oxygen ion bombarded surface is dominated by the transition at 1.6 eV. UPS indicated that the initial state for this ELS transition is peaked at ?0.6 eV (referred to the Fermi level EF in the photoemission spectrum, and that the 2.4 eV surface-sensitive ELS transition probably arises from the band of occupied states between the bulk valence band maximum to the Fermi level. High energy electron beams (1.6 keV 20 μA) used in AES were found to disorder clean and initially well-ordered TiO2 surfaces. Argon ion bombardment of clean ordered TiO2 (110) and (100)?(1 × 3) surfaces caused the work function and surface band bending to decrease by almost 1 eV and such decrease is explained as due to the loss of oxygen from the surface.  相似文献   

18.
Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ~3.8 eV by an oxygen exposure of ~2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ~2 L where the work function has a maximum value of ~4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ~2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ~4.4 to ~3.8 eV until an oxygen exposure of ~100L. The initial sticking coefficient on LaB6(110) has the highest value of ~1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.  相似文献   

19.
The adsorption of ammonia on the Ni(110) and Ni(111) surfaces has been studied with high resolution (≤ 65 cm?1) electron energy loss spectroscopy (EELS) combined with thermal desorption spectroscopy. The EELS spectra of the initial chemisorbed layer or α state on each surface are very different. Ammonia chemisorbed on the Ni(110) surface exhibits a strong Ni-N stretching mode at 570 cm?1 which is absent on the Ni(111) surface. The Ammonia adsorption site appears to be different on the Ni(110) and Ni(111) surfaces. We suggest that the absence of the M-N stretching mode on the Ni(111) surface is a general characteristic of the ammonia adsorption site on the (111) surfaces of fcc Group VIII metals.  相似文献   

20.
A. Spitzer  H. Lüth 《Surface science》1982,120(2):376-388
The water adsorption on clean and oxygen precovered Cu(110) surfaces is studied by means of UPS, LEED, work function measurements and ELS. At 90 K on the clean surface molecular water adsorption is indicated by UPS. The H2O molecules are bonded at the oxygen end and the H-O-H angle is increased as compared with the free molecule. In the temperature range between 90 and 300 K distorted H2O molecules and adsorbed hydroxyl species (OH) are detected, which are desorbed at room temperature. On an oxygen covered surface hydroxyl groups are formed by dissociation of adsorbed water molecules at a lower temperature than on the clean surface. Multilayers of condensed water are found below 140 K in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号