首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption, desorption, and surface structural properties of Na and NO on Ag(111), together with their coadsorption and surface reactivity, have been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption of NO into the a-state occurs at 300 K with an initial sticking probability of ~0.1, saturation occurring at a coverage of ~120. Desorption occurs reversibly without decomposition and is characterised by a desorption energy of Ed ~ 103 kJ mol?1. In the coverage regime 0 < θNa < 1, sodium adsorbs in registry with the Ag surface mesh and the desorption spectra show a single peak corresponding to Ed ~ 228 kJ mol?1. For multilayer coverages (1 < θ Na < 5) a new low temperature peak appears in the desorption spectra with Ed ~ 187 kJ mol?1. This is identified with Na desorption from an essentially Na surface, and the desorption energy indicates that Na atoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The LEED results show that Na multilayers grow as a (√7 × √7) R19.2° overlayer, and are interpreted in a way which is consistent with the above conclusion. Coadsorption of Na and NO leads to the appearance of a more strongly bound and reactive chemisorbed state of NO (β-NO) with Ed ~ 121 kJ mol?1. β-NO appears to undego surface dissociation to yield adsorbed O and N atoms whose subsequent reactions lead to the formation of N2, N2O, and O2 as gaseous products. The reactive behaviour of the system is complicated by the effects of Na and O diffusion into the bulk of the specimen, but certain invariant features permit us to postulate an overall reaction mechanism, and the results obtained here are compared with other relevant work.  相似文献   

2.
The adsorption of Na and the coadsorption of Na and O2 on Ag(110) have been studied by LEED, thermal desorption, and Auger spectroscopy. For Na coverages in the regime 0 < θNa < 2 the Na desorption spectra show a single peak (β) corresponding to a desorption energy of ~195 kJ mol?1, and at θNa ~ 2 a (1 × 2) LEED pattern appears. At still higher coverages (2 < θNa < 5), a (1 × 3) surface phase is formed, and a new peak (α) appears in the desorption spectra; this is identified with Na desorption from an essentially Na surface. The desorption energy of αNa (~174 kJ mol?1) indicates that Na adatoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The initial sticking probability of O2 on Na-dosed Ag(110) is enormously enhanced over the clean surface value, being of the order of unity, and O2 chemisorption ultimately leads to a (4 × 1) surface structure. The presence either subsurface Na alone, or of both Na and O below the surface, causes substantial changes in surface behaviour. In the former case, submonolayer doses of Na lead to the appearance of a (1 × 2) structure; and in the latter case, Na + O2 coadsorption results in a c(4 × 2) structure. Auger spectroscopy indicates that the Ag(110)-c(4 × 2)NaO phase forms with a constant stoichiometry which is independent of the initial Na dose. The Na:O ratio in this adlayer is believed to be of the order of unity. The structures of the various ordered phases, the nature of the AgNa bonding, and the interatomic spacing between the alkali adatoms on Ag(110) are discussed.  相似文献   

3.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

4.
At 300 K and in the coverage regime (0<θ<13) bromine chemisorbs rapidly on Pd(111); the sticking probability and dipole moment per adatom remain constant at 0.8 ± 0.2 and 1.2 D, respectively. This stage is marked by the appearance of a √3 structure: desorption occurs exclusively as atomic Br. At higher coverages, desorption of molecular Br2 begins (desorption energy ~130 kJ mol?1) as does the nucleation and growth of PdBr2 on the surface. This latter stage is signalled by the appearance of a √2 LEED pattern and the observation of PdBr2 as a desorption product (desorption energy ~37 kJ mol?1). Some PdBr2 is also lost by surface decomposition and subsequent evaporation of atomic Br. The data indicate that the transition state to Br adatom desorption is localised and that PdBr2(a) ? Br(a) interconversion occurs; these surface species do not appear to be in thermodynamic equilibrium during the desorption process.  相似文献   

5.
Alkali atoms were scattered with hyperthermal energies from a clean and an oxygen covered (θ ≈ 0.5 ML) W(110) surface. The trapping probability of K and Na atoms on oxygen covered W(110) has been measured as a function of incoming energy (0–30 eV) and incident angle. A considerable enhancement of trapping on the oxygen covered surface compared to a clean surface was observed. At energies above 25 eV there are still K and Na atoms being trapped by the oxygen covered surface. From the temperature dependence of the mean residence time τ of the initially trapped atoms the pre-exponential factor τ0 and the desorption energy Q were derived using the relation: τ = τ0exp(QkTs). On clean W(110) we obtained for Li: τ0 = (8 ± 84) × 10?14sec, Q = (2.78 ± 0.09) eV; for Na: τ0 = (9 ± 3) × 10?14 sec, Q = (2.55 ± 0.04) eV; and for K: τ0 = (4 ± 1) × 10?13 sec, Q = (2.05 ± 0.02) eV. Oxygen covered W(110) gave for Na: τ0 = (7 ±3) × 10?15 sec, Q = (2.88 ± 0.05) eV; and for K: τ0 = (1.3 ± 0.90.6) × 10?14sec, Q = (2.48 ±0.05) eV. The adsorption on clean W(110) has the features of a supermobile two-dimentional gas; on the oxygen covered W(110) adsorbed atoms have the partition function of a one-dimen-sional gas. The binding of the adatoms to the surface has a highly ionic character in the systems of the present experiment. An estimate is given for the screening length of the non-perfect conductor W(110):ks?1≈ 0.5 Å.  相似文献   

6.
At 300 K oxygen chemisorbs on Ag(331) with a low sticking probability, and the surface eventually facets to form a (110)?(2 × 1) O structure with ΔΦ = +0.7 eV. This facetting is completely reversible upon O2 desorption at ~570 K. The electron impact properties of the adlayer, together with the LEED and desorption data, suggest that the transition from the (110) facetted surface to the (331) surface occurs at an oxygen coverage of about two-thirds the saturation value. Chemisorbed oxygen reacts rapidly with gaseous CO at 300 K, the reaction probability per impinging CO molecule being ~0.1. At 300 K chlorine adsorbs via a mobile precursor state and with a sticking probability of unity. The surface saturates to form a (6 × 1) structure with ΔΦ = +1.6 eV. This is interpreted in terms of a buckled close-packed layer of Cl atoms whose interatomic spacing is similar to those for Cl overlayers on Ag(111) and Ag(100). Desorption occurs exclusively as Cl atoms with Ed ~ 213 kJ mol?1; a comparison of the Auger, ΔΦ, and desorption data suggests that the Cl adlayer undergoes significant depolarisation at high coverages. The interaction of chlorine with the oxygen predosed surface, and the converse oxygen-chlorine reaction are examined.  相似文献   

7.
The decomposition of HCOOD was studied on Ni(100). Low temperature adsorption of HCOOD resulted in the desorption of D2O, CO2, CO, and H2. The D2O was evolved below room temperature. CO2 and H2 were evolved in coincident peaks at a temperature above that at which h2 desorbed following H2 adsorption and well above that for CO2 desorption from CO2 adsorption; CO desorbed primarily in a desorption limited step. The decomposition of formic acid on the clean surface was found to yield equal amounts of H2, CO, and CO2 within experimental error. The kinetics and mechanism of the decomposition of formic acid on Ni (110) and Ni(100) single crystal surfaces were compared. The reaction proceeded by the dehydration of formic acid to formic anhydride on both surfaces. The anhydride intermediate condensed into islands due to attractive dipole-dipole interactions. Within the islands the rate of the decomposition reaction to form CO2 was given by:
Rate = 6 × 1015 exp{?[25,500 + ω(ccsat)]/RT} × c
, where c is the local surface concentration, csat is the saturation coverage for the particular crystal plane, and ω is the interaction potential. The interaction potential was determined to be 2.7 kcal/mole on Ni(110) and 1.4 kcal/mole on Ni(100); the difference observed was due to structural differences of the surfaces relating to the alignment of the dipole moments within the islands. These attractive interactions resulted in an autocatalytic reaction on Ni(110), whereas the interaction was not strong enough on Ni(100) to sustain the autocatalytic behavior. Formic acid decomposition oxidized the Ni(100) surface resulting in the formation of a stable surface oxide. The buildup of the oxide resulted in a change in the selectivity reducing the amount of CO formed. This trend indicated that on the oxide surface the decomposition proceeded via a formate intermediate as on Ni(110) O.  相似文献   

8.
以俄歇电子能谱、X射线光电子能谱和热脱附谱研究了室温下NO在Ag/Pt(110)-(1×2)双金属表面的吸附. 在该双金属表面上观察到了可能的亚硝酸盐/硝酸盐表面物种,其在更高温度下分解生成N2. 然而,室温下NO在清洁Pt(110)表面和Ag-Pt合金表面上并不会生成这种亚硝酸盐/硝酸盐表面物种. 亚硝酸盐/硝酸盐表面物种的形成归因于高度配位不饱和Ag粒子的高活性及其与Pt基底之间的协同作用.  相似文献   

9.
The effect of adsorbed Na on the surface conductivity, Δσ, and surface recombination velocity, S, of a clean (114)Ge surface is studied. The surface conductivity is a complicated function of the surface Na concentration, NNa; at NNa ≈ 1.5 × 1013 atoms/cm2, it has a minimum; at ca. (3–5) × 1014atoms/cm2, it has a maximum. For a monolayer coverage (ca. 7.2 × 1014atoms/cm2) the values of Δσ are not much different from those of a clean Ge surface. The surface recombination velocity is a three-valued function of the surface potential, US (calculated from the Δσ values), depending on the Na overlayer coverage and heat treatment of the sample. Three different surface structures (LEED data) were found to correspond to the three S versus US curves reported here. Thermal desorption studies show that Na is desorbed in a wide temperature interval. Two peaks have been isolated, studied and discussed. At low coverages a single peak is found to exist, which obeys the first-order desorption kinetics, with a desorption energy of (52 ± 3)kcal/mol. This peak is attributed to the surface defects. For coverages close to14 monolayer a new peak was observed in the spectrum. The desorption energy of this binding state exceeds that of all the other states. When the overlayer coverage is increased, this peak is shifted to higher temperatures, as predicted for a half-order desorption kinetics. By comparing also with LEED data, it may be concluded that this most tightly bound sodium has formed on the Ge(111) surface patches of an ordered structure in which one Na atom is bonded to three Ge atoms.  相似文献   

10.
The chemisorption of nitric oxide on (110) nickel has been investigated by Auger electron spectroscopy, LEED and thermal desorption. The NO adsorbed irreversibly at 300 K and a faint (2 × 3) structure was observed. At 500 K this pattern intensified, the nitrogen Auger signal increased and the oxygen signal decreased. This is interpreted as the dissociation of NO which had been bound via nitrogen to the surface. By measuring the rate of the decomposition as a function of temperature the dissociation energy is calculated at 125 kJ mol?1. At ~860 K nitrogen desorbs. The rate of this desorption has been measured by AES and by quantitative thermal desorption. It is shown that the desorption of N2 is first order and that the binding energy is 213 kJ mol?1. The small increase in desorption temperature with increasing coverage is interpreted as due to an attractive interaction between adsorbed molecules of ~14 kJ mol?1 for a monolayer. The (2 × 3) LEED pattern which persists from 500–800 K is shown to be associated with nitrogen only. The same pattern is obtained on a carbon contaminated crystal from which oxygen has desorbed as CO and CO2. The (2 × 3) pattern has spots split along the (0.1) direction as (m, n3) and (m2, n). This is interpreted as domains of (2 × 3) structures separated by boundaries which give phase differences of 3 and π. The split spots coalesce as the nitrogen starts to desorb. A (2 × 1) pattern due to adsorbed oxygen was then observed to 1100 K when the oxygen dissolved in the crystal leaving the nickel (110) pattern.  相似文献   

11.
Adsorption of NO and O2 on Rh(111) has been studied by TPD and XPS. Both gases adsorb molecularly at 120 K. At low coverages (θNO < 0.3) NO dissociates completely upon heating to form N2 and O2 which have peak desorption temperatures at 710 and 1310 K., respectively. At higher NO coverages NO desorbs at 455 K and a new N2 state obeying first order kinetics appears at 470 K. At saturation, 55% of the adsorbed NO decomposes. Preadsorbed oxygen inhibits NO decomposition and produces new N2 and NO desorption states, both at 400 K. The saturation coverage of NO on Rh(111) is approximately 0.67 of the surface atom density. Oxygen on Rh(111) has two strongly bound states with peak temperatures of 840 and 1125 K with a saturation coverage ratio of 1:2. Desorption parameters for the 1125 peak vary strongly with coverage and, assuming second-order kinetics, yield an activation energy of 85 ± 5 kcalmol and a pre-exponential factor of 2.0 cm2 s?1 in the limit of zero coverage. A molecular state desorbing at 150 K and the 840 K state fill concurrently. The saturation coverage of atomic oxygen on Rh(111) is approximately 0.83 times the surface atom density. The behavior of NO on Rh and Pt low index planes is compared.  相似文献   

12.
A combination of modern surface measurement techniques such as LEED, AES and Thermal Desorption Spectroscopy were used to study the chemisorptive behavior of NO and CO on a (1010)Ru surface. The experimental evidence strongly favors a model in which NO adsorbs and rapidly dissociates into separate nitrogen and oxygen adsorbed phases, each exhibiting ordered structures: the C(2 × 4) and (2 × 1) structures at one-half and full saturation coveilage, respectively. At temperatures as low as 200°C, the nitrogen phase begins to desorb, and continuous exposure to NO in this temperature range results in an increasing oxygen coverage until the surface is saturated with oxygen and no further NO dissociation can take place. The nitrogen desorption spectrum depends strongly on coverage and exhibits several peaks which are related to structure of the adsorbed phase. There is evidence that once the surface is saturated with the dissociated NO phase further NO adsorption occurs in a molecular state. Carbon monoxide adsorbs in a molecular state and does not exhibit an ordered structure. The implications of the results with respect to the catalytic reduction of NO by H2 and CO and the N2 selectivity of Ru catalysts are discussed.  相似文献   

13.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

14.
The adsorption and nucleation of indium on clean (111) silicon surfaces are studied by a UHV molecular beam mass-spectrometric technique. The thermal accommodation of the adatoms on the surface is complete. At very low surface coverages θ, an adsorption energy of 57 kcalmole and a preexponential term τ0 of the Frenkel relation equal to 8 × 10?13 s are found from transient response measurements. The isosteric heat of adsorption Ea varies very slowly with θ, Ea is equal to 59 kcalmole for θ ~ 10?3 and 57 kcalmole for θ = 0.9. The nucleation occurs without supersaturation in an adsorbed layer near a monolayer.  相似文献   

15.
CO adsorption/desorption on clean and sulfur covered Pt(S)-[9(111) × (100)] surfaces was studied using AES, TPD, and modulated beam experiments. CO desorption occurred from two states on the clean surface — a low temperature state associated with the (111) terraces and a high temperature state associated with the steps/defects. Thermal desorption results indicated that above small CO coverages conversion from the low temperature state into the high temperature state was activated and that back conversion was slow. Sulfur preferentially adsorbed at step/defect sites and decreased the population of the high temperature desorption state. Modulated beam experiments were performed in order to determine CO adsorption/desorption parameters as a function of sulfur coverage on the Pt crystal. The sticking coefficient and binding energy of CO decreased as the sulfur concentration increased. Sulfur adsorption at step/defect sites decreased the CO sticking coefficient only slightly but increased the effective rate constant for CO desorption significantly. Sulfur adsorption on the terraces affected CO adosrption more than sulfur at step sites. On the clean surface the effective rate constant for CO desorption was
1 × 1015 s?1 exp (?36.2 kcal/moleRT)
Desorption occurred from both terrace and step/defect sites, but the kinetics were characteristic of the step/defect sites. For the surface on which step/defect sites were blocked by sulfur the effective desorption rate constant was
keff = 1 × 1013 s?1 exp (?27.5 kcal/moleRT)
indicating an appreciable decrease in CO binding on the terraces, though sulfur-CO repulsive interactions had probably made keff larger than the true rate constant for desorption from clean (111) planes. The results showed clearly a compensation effect in activation energy and preexponential factor.  相似文献   

16.
Monolayer adsorption of pure ethylene on the (111) surface of saver at 80 K has been studied by X-ray (hv = 1486.6 eV) and ultraviolet (hv = 21.2 and 40.8 eV) photoelectron spectroscopy. The density of the adlayer is approximately 5 × 1014 molecules/cm2 at saturation, multilayer formation being prohibited by the ultrahigh vacuum of the spectrometer. The molecular orbitals designated σ1CH, σCC, σCH and 2ss1 by Demuth are observed at 7.0, 9.0, 10.3 and 13.6 eV below the Fermi level, respectively, but the higher lying π level is obscured by the silver d-band emission. The data are consistent with an undistorted molecule, adsorbed with the molecular axis parallel to the surface. Desorption occurs below 200 K without significant decomposition products remaining on the surface in agreement with the conventional notion that clean silver is relatively inert with respect to olefin adsorption.  相似文献   

17.
The flash decomposition of CH3COOH was studied on a clean nickel (110) surface following adsorption at 30° C in order to access the applicability of chemical reaction rate theory to a homologous series of reactants on a well-defined surface. As was observed for formic acid, acetic acid adsorbed at 30° C to yield gaseous H2O and to form islands of adsorbed anhydride intermediates; the decomposition proceeded by a two-dimensional auto-catalytic mechanism to form H2, CO2, Co and surface carbon. The decomposition of the anhydride was rate determining for the formation of CO2 and H2. The rate of decomposition was well described by the equation governing the formic acid decomposition on the same surface. The activation energy for this first order decomposition was determined to be 28.2 kcalgmol and the pre-exponential factor, v, was found to be 6.4 × 1014 s?1 with a fraction of initiation sites of 0.004. These values were nearly the same as those observed for the decomposition of HCOOH, suggesting identical intramolecular mechanisms for the unimolecular decomposition of the adsorbed intermediates. The relative values of v for the decomposition of HCOOH, DCOOH and CH3COOH indicated that the motion of the H, D or CH3 group was involved in the rate-limiting step.  相似文献   

18.
The adsorption of SO2 on Ag(110) and the reaction of SO2 with oxygen adatoms have been studied under ultrahigh vacuum conditions using low energy electron diffraction, temperature programmed reaction spectroscopy and photoelectron spectroscopy. Below 300 K, SO2 adsorbs molecularly giving p(1×2) and c(4×2) LEED patterns at coverages of one half and three quarter monolayers. respectively. At intermediate coverages, streaked diffraction patterns, similar to those reported for noble gas and alkali metal adsorption on the (110) face of face-centered cubic metals were observed, indicating adsorption out of registry with the surface. A feature at low binding energy in the ultraviolet photoemission spectrum appeared which was assigned to a weak chemisorption bond to the surface via the sulfur, analogous to bonding observed in SO2-amine charge transfer complexes and in transition metal complexes. SO2 exhibited three binding states on Ag(110) with binding energies of 41, 53 and 64 kJ mol?1; no decomposition on clean Ag(110) was observed. On oxygen pretreated Ag(110), SO2 reacted with oxygen adatoms to form SO3(a), as determined by X-ray photoelectron spectroscopy. Reacting preadsorbed atomic oxygen in a p(2 × 1) structure with SO2 resulted in a c(6 × 2) pattern for SO3(a). The adsorbed SO3(a) decomposed and disproportionated upon heating to 500 K to yield SO2(g), SO4(a) and subsurface oxygen.  相似文献   

19.
The adsorption and reaction of water on clean and oxygen covered Ag(110) surfaces has been studied with high resolution electron energy loss (EELS), temperature programmed desorption (TPD), and X-ray photoelectron (XPS) spectroscopy. Non-dissociative adsorption of water was observed on both surfaces at 100 K. The vibrational spectra of these adsorbates at 100 K compared favorably to infrared absorption spectra of ice Ih. Both surfaces exhibited a desorption state at 170 K representative of multilayer H2O desorption. Desorption states due to hydrogen-bonded and non-hydrogen-bonded water molecules at 200 and 240 K, respectively, were observed from the surface predosed with oxygen. EEL spectra of the 240 K state showed features at 550 and 840 cm?1 which were assigned to restricted rotations of the adsorbed molecule. The reaction of adsorbed H2O with pre-adsorbed oxygen to produce adsorbed hydroxyl groups was observed by EELS in the temperature range 205 to 255 K. The adsorbed hydroxyl groups recombined at 320 K to yield both a TPD water peak at 320 K and adsorbed atomic oxygen. XPS results indicated that water reacted completely with adsorbed oxygen to form OH with no residual atomic oxygen. Solvation between hydrogen-bonded H2O molecules and hydroxyl groups is proposed to account for the results of this work and earlier work showing complete isotopic exchange between H216O(a) and 18O(a).  相似文献   

20.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号