首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 247 毫秒
1.
张超  孟旸  颜超  唐鑫  王永亮  张庆瑜 《物理学报》2007,56(1):452-458
利用分子动力学模拟方法研究了Cu/Au(001)和Au/Cu(001)异质外延岛的演化行为. 研究结果显示:Cu-Au体系的相互外延行为呈现出明显的非对称性. Cu在Au(001)基体表面可以形成完整的外延结构,而Au在Cu(001)基体表面外延将导致失配位错的出现. 导致非对称外延生长行为的根本原因是外延岛的应变状态的差异和外延岛自身性质的不同. 随着外延岛的长大,Cu外延岛与Au(001)基体的微观失配度由最初的接近宏观失配度的9%左右迅速单调下降,并最终趋于晶格匹配;而Au在Cu(001)基体表面外延的微观失配度则呈现出振荡增加趋势. Cu/Au(001)体系的基体形变主要发生在外延岛的边缘,而Au/Cu(001)体系的基体形变主要发生在外延岛内部所对应的区域.  相似文献   

2.
颜超  张超  唐鑫  孟旸  张庆瑜 《物理学报》2007,56(11):6580-6587
采用嵌入原子方法的原子间相互作用势,利用分子动力学模拟方法研究了Au/Cu(111)和Ag/Cu (111)体系的异质外延结构特征以及外延岛形貌和应变释放的演化过程. 通过对比Au/Cu(111)和Ag/Cu (111)体系的异质外延结构及外延岛演化行为,揭示了导致Ag/Cu (111)体系中异质外延层形成Moiré结构的微观物理机理及其与外延体系的宏观物理特性之间的关系. 研究结果显示,外延岛原子与基体表面原子之间的界面结合强度是形成Moiré结构的重要因素,异质外延体系的界面结合强度取决于二者的合金熔解热. 当异质外延体系的合金熔解热为正值时,界面结合强度较弱,有利于Moiré结构的形成. 同时,外延岛原子之间的相互作用决定着外延岛的面内弛豫行为,对Moiré结构的形成有一定的影响. 外延岛的面内弛豫行为与外延层和基体之间的相对刚度有关,弹性模量较大的外延层具有较强的延展能力,对Moiré结构的形成有利. 此外,Moiré结构的形成与外延岛的尺度有关,主要是外延岛边界原子的钉扎作用对外延岛内原子弛豫行为的约束作用的影响.  相似文献   

3.
周耐根  周浪 《物理学报》2005,54(7):3278-3283
运用分子动力学方法对负失配条件下的外延铝簿膜中失配位错的形成进行了模拟研究.所采 用的原子间相互作用势为嵌入原子法(EAM)多体势.模拟结果显示:在500K下长时间静态弛豫 ,表面和内部结构完整的外延膜在9—80原子层厚度范围内(约为其热力学临界厚度的3—40 倍)均不形成失配位错,而在薄膜表面预置一个单原子层厚、三个原子直径大小的凸台或凹 坑时,失配位错则能够在15个原子层厚的外延膜上迅速形成:在动态沉积生长条件下,表面 自然形成凹凸,初始厚度为9个原子层厚的外延膜在沉积生长中迅速形成失配位错.在三种条 件下,所形成的位错均为伯格斯矢量与失配方向平行的全刃位错.分析发现:在压应力作用 下,表面微凸台诱发了其侧薄膜内部原子的挤出,造成位错形核;而表面微凹坑则直接因压 应力作用形成了一个表面半位错环核. 关键词: 外延薄膜 失配位错 分子动力学 铝  相似文献   

4.
载能原子沉积Au/Au(100)外延薄膜生长的计算机模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
张庆瑜  马腾才  潘正瑛 《物理学报》2000,49(6):1124-1131
在分子动力学研究的基础上建立了载能原子的沉积动力学物理模型,并根据在局域环境下的表面原子扩散模型,通过运动学Monte Carlo方法研究了载能粒子沉积Au/Au(100)薄膜的初期生长过程,探讨了载能粒子沉积对薄膜生长的影响及其随基体温度的变化.通过计算机模拟发现:载能粒子沉积的Au/Au(100)薄膜生长仍然呈现层状生长-三维岛状生长-准二维层状.在薄膜生长初期,载能粒子的作用是促进表面原子的成核,增加基体表面的缺陷;在薄膜的生长阶段,载能粒子通过抑制三维岛的生长速率起着平滑薄膜表面形貌的作用.载能粒 关键词:  相似文献   

5.
单向拉伸作用下Cu(100)扭转晶界塑性行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用分子动力学方法研究了在不同扭转角度下的Cu(100)失配晶界位错结构,以及不同位错结构对晶界强度的影响.模拟结果表明:小角度扭转晶界上将形成失配位错网,失配位错密度随着晶粒之间的失配扭转角度的增加而增加.变形过程中,位错网每个单元中均产生位错形核扩展.位错之间的塞积作用影响晶界的屈服强度:随着位错网格密度的增加,位错之间的塞积作用增强,界面的屈服强度得到提高.大角度扭转晶界将形成面缺陷,在变形中位错由晶界角点处形核扩展,此时由于面缺陷位错开动应力趋于一致,因此晶界的临界屈服强度趋于定值. 关键词: 扭转晶界 失配位错网 强化机理 分子动力学  相似文献   

6.
唐鑫  张超  张庆瑜 《物理学报》2005,54(12):5797-5803
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法计算了同质外延生长中不同层数的三维Cu(111)表面岛上表面原子扩散激活能,分析了三维表面岛的层数对表面原子交换扩散和跳跃扩散势垒的影响. 研究结果表明,二维Enrilich-Schwoebel(ES)势垒小于三维ES势垒,且三维ES势垒不随表面岛层数的增加而显著变化. 对于侧向表面为(100)的表面岛,表面原子沿〈011〉方向上的扩散行为,随表面岛层数增加而逐渐变化;在表面岛层数达到3层时,扩散路径上的势垒变化趋于稳定,表面原子扩散以下坡扩散为主. 对于侧面取向为(111)的表面岛,当表面岛层数大于3层后,开始呈现上坡扩散的可能. 关键词: 表面原子 扩散 分子动力学模拟  相似文献   

7.
陈成  陈铮  张静  杨涛 《物理学报》2012,61(10):108103-108103
采用晶体相场模型研究了异质外延过程中失配应变与应力弛豫对外延层界面形态演化的影响, 并对由衬底倾角引起的外延层晶向倾侧进行了分析.研究结果表明: 在有一定倾角的衬底晶体上进行外延生长时,若衬底和外延层之间失配度较大 (ε>0.08),外延层中弹性畸变能会以失配位错的形式释放, 最终薄膜以稳定的流动台阶形式生长且外延层的晶向倾角与衬底倾角呈近似线性关系. 而当衬底和外延层之间失配度较小(ε<0.04)不足以形成失配位错时, 外延层中弹性畸变能会以表面能的形式释放,最终使薄膜以岛状形态生长. 在高过冷度条件下,衬底倾角和失配度较大时,衬底和外延层之间会形成由大量位错规则排列而成的小角度晶界从而显著改变外延层的生长位向.  相似文献   

8.
周耐根  周浪 《物理学报》2008,57(5):3064-3070
运用分子动力学方法对纳米晶柱阵列衬底上铝簿膜的外延生长进行了模拟研究.所采用的原子间相互作用势为嵌入原子法(EAM)多体势.模拟结果表明:采用纳米晶柱阵列衬底可以在不形成失配位错的条件下释放其上生长的外延薄膜晶体中的失配应变,有效地抑制其中失配位错的形成,获得高质量的外延薄膜晶体;这种纳米晶柱阵列的几何设计应满足两个基本条件:1) 晶柱的横截面尺寸应大于对应温度下的晶柱热失稳临界尺寸,以克服纳米结构的热失稳,模拟显示700K下铝的热失稳临界尺寸为19nm;2) 晶柱的高度与间距之比应大于076,以保证 关键词: 失配位错 分子动力学 纳米晶柱 铝  相似文献   

9.
周耐根  周浪  杜丹旭 《物理学报》2006,55(1):372-377
用分子动力学方法对5%负失配条件下面心立方晶体铝薄膜的原子沉积外延生长进行了三维模拟.铝原子间的相互作用采用嵌入原子法(EAM)多体势计算.模拟结果再现了失配位错的形成现象.分析表明,失配位错在形成之初即呈现为Shockley扩展位错,即由两个伯格斯矢量为〈211〉/6的部分位错和其间的堆垛层错组成,两个部分位错的间距、即层错宽度为1.8 nm,与理论计算结果一致;外延晶体薄膜沉积生长中,位错对会发生滑移,但其间距保持稳定.进一步观察发现,该扩展位错产生于一种类似于“局部熔融-重结晶”的表层局部无序紊乱- 关键词: 失配位错 外延生长 薄膜 分子动力学 铝  相似文献   

10.
颜超  段军红  何兴道 《物理学报》2010,59(12):8807-8813
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法模拟了六种贵金属原子(Ni,Pd,Pt,Cu,Ag,Au)分别在Pt(111)表面低能沉积的动力学过程.结果表明:随着入射能量从0.1eV升高到200eV,基体表面原子是按层迁移的,沉积过程对基体表面的影响和沉积原子在基体表层的作用均存在两个转变能量(ET1≈5eV,ET2≈70eV).当入射能量低于5eV时,基体表面几乎没有吸附原子和空位形成,沉积原子在基体表层几乎没有注入产生;当入射能量在5—70eV范围内时,沉积原子在基体表层有注入产生,其注入深度小于两个原子层,即为亚注入,此时吸附原子主要由基体表层原子形成,基体表面第三层以下没有空位形成;当入射能量高于70eV时,沉积原子的注入深度大于两个原子层,将会导致表面以下第三层形成空位,并且空位产额随入射能量的升高而急剧增加.基于分子动力学模拟的结果,对低能沉积作用下的薄膜生长以及最优沉积参数的选择进行了讨论.  相似文献   

11.
We study the equilibrium shape, shape transitions and optimal size of strained heteroepitaxial nanoislands with a two-dimensional atomistic model using simply adjustable interatomic pair potentials. We map out the global phase diagram as a function of substrate-adsorbate misfit and interaction. This phase diagram reveals all the phases corresponding to different well-known growth modes. In particular, for large enough misfits and attractive substrate there is a Stranski-Krastanow regime, where nano-sized islands grow on top of wetting films. We analyze the various terms contributing to the total island energy in detail, and show how the competition between them leads to the optimal shape and size of the islands. Finally, we also develop an analytic interpolation formula for the various contributions to the total energy of strained nanoislands.  相似文献   

12.
The equilibrium elastic strain in epitaxial islands of small size is shown to have a sawtooth dependence on island width by minimizing the systems energy as calculated from a periodic interaction potential between substrate and overgrowth. Such a sawtooth variation is consistent with Vincent's observations and idea that a given misfit between island and substrate may not be entirely accommodated by an integral number of identical misfit dislocations, and hence, the remaining misfit, which depends in part on island width, will be accommodated by residual elastic strain. The present calculations of mechanical equilibrium support these ideas and further reveal that in some cases misfit dislocations may over compensate for the misfit, thereby introducing an elastic strain of opposite sign to that normally expected. Other results of the calculations are in agreement with earlier theoretical and experimental observations.  相似文献   

13.
We have implemented Kinetic Monte Carlo (KMC) simulations of growth of heteroepitaxial thin films. A simple cubic Solid-on-Solid (SOS) model is used to describe the atomic configurations and nearest neighbor bonds are used to describe the energetics. Elastic effects are modeled using harmonic springs between atoms displaced from their lattice positions. The misfit strain is a consequence of different equilibrium spring lengths for the substrate and film. The consistency of this elastic model with continuum theories for strained surfaces has been shown by performing elastic energy calculations for various morphologies. KMC simulations for submonolayer deposition show scaling behavior in the island size distribution. The resulting island shapes are predominantly square and do not show any shape transitions in the physically relevant range of conditions. This method gives a detailed understanding of elastic interactions and their interplay with surface diffusion in heteroepitaxial systems.  相似文献   

14.
We study the morphological evolution of strained heteroepitaxial films using kinetic Monte Carlo simulations in two dimensions. A novel Green's function approach, analogous to boundary integral methods, is used to calculate elastic energies efficiently. We observe island formation at low lattice misfit and high temperature that is consistent with the Asaro-Tiller-Grinfeld instability theory. At high misfit and low temperature, islands or pits form according to the nucleation theory of Tersoff and LeGoues.  相似文献   

15.
The equilibrium shape of a monatomic strained island on a substrate depends on the step free energies and the difference in surface stress between the island and the substrate. For small island sizes the step free energies dominate, resulting in compact islands. Beyond a critical island size, however, the strain energy becomes dominant and the island maximizes its perimeter, resulting in elongated islands. Here we show that for strained islands with force monopoles pointing in opposing directions at neighboring steps, a regime exists near the critical island size where both compact and elongated shapes can coexist.  相似文献   

16.
The strain relief of heteroepitaxial bcc-Fe(001) films, deposited at 520-570 K onto MgO(001), has been investigated by scanning tunneling microscopy. In accordance with real-time stress measurements, the tensile misfit strain is relieved during coalescence of flat, mainly 2-3 monolayers (ML) high Fe islands at the high thickness of approximately 20 ML. To accommodate the misfit between merging strain-relaxed islands, a network of 1/2[111] screw dislocations is formed. A strong barrier for dislocation glide--which is typical for bcc metals--is most likely responsible for the big delay in strain relief of Fe/MgO(001), since only the elastic energy of the uppermost layer(s) is available for the formation of an energy-costly intermediate layer.  相似文献   

17.
I. Goldfarb 《Surface science》2007,601(13):2756-2761
In this work, shapes and shape transitions of several types of self-assembled heteroepitaxial nanostructures, as observed in in situ scanning tunneling microscopy experiments during growth, are examined in the framework of several equilibrium and kinetic models. In particular, heteroepitaxial TiSi2 and CoSi2 islands on Si(1 1 1) are shown to behave in accordance with generalized Wulff-Kaishew theorem of equilibrium strained and supported crystal shapes. More specifically, these silicide nanocrystals exhibit out-of-plane thickening shape transition by increasing their vertical aspect ratio with growth, as long as they are strained, and inverse (flattening) transition upon relaxation by misfit dislocations. On the other hand, heteroepitaxial Ge and CoSi2 islands on Si(0 0 1) are well-known for their in-plane anisotropic elongation. Plausible energetic and kinetic reasons for such elongation, based on the unique nucleation features of Ge-hut/Si(0 0 1) and non-planar CoSi2-hut/Si(0 0 1) interface, are discussed.  相似文献   

18.
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号