首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
2.
Lead Zirconate Titanate (PZT) is a piezo-electric ceramic material that needs to be characterized for its potential use in microelectronics. Energy dispersive X-ray analysis (EDX) is conducted to determine the chemical composition of the PZT ceramics. The scanning electron microscope (SEM) is performed to study the surface morphology, grain structure and grain boundaries. The SEM image helps us to understand the surface wave propagation and scattering phenomena by the PZT and the reason for its anisotropy and inhomogeneity due to the grain structure. In this paper scanning acoustic microscopy at 100 MHz excitation frequency is conducted for determining mechanical properties of PZT. Earlier works reported only the longitudinal wave speed in PZT while in this paper longitudinal, shear and surface acoustic wave speeds of sintered PZT are measured from its acoustic material signature (AMS) curves, also known as V(z) curves. AMS or V(z) curve is the variation of the output voltage as a function of the distance between the acoustic lens focal point and the reflecting surface. The average velocities of longitudinal, shear and surface acoustic waves in a PZT specimen are determined from its V(z) curve generated at 100 MHz excitation frequency and found to be over 5000 m/s, over 3000 m/s and between 2500 and 3000 m/s, respectively. From these velocities all elastic constants of the specimen are obtained.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(4):1305-1309
In this paper we demonstrate the use of an energy-efficient surface acoustic wave (SAW) device for driving closed-vessel SAW-assisted (CVSAW), ligand-free Suzuki couplings in aqueous media. The reactions were carried out on a mmolar scale with low to ultra-low catalyst loadings. The reactions were driven by heating resulting from the penetration of acoustic energy derived from RF Raleigh waves generated by a piezoelectric chip via a renewable fluid coupling layer. The yields were uniformly high and the reactions could be executed without added ligand and in water. In terms of energy density this new technology was determined to be roughly as efficient as microwaves and superior to ultrasound.  相似文献   

4.
Tissue elasticity estimation is a growing area of ultrasound research. One proposed approach would apply acoustic radiation force to displace tissue and use ultrasonic motion tracking techniques to measure the resultant displacement. Such a technique might allow noninvasive imaging of tissue elastic properties. The potential of this method will be limited by the magnitude of displacements which can be generated at reasonable acoustic intensity levels. This paper presents methods for estimating the internal displacements induced in an elastic solid by acoustic radiation force. These methods predict displacements on the order of 400 microns in the human vitreous body, 0.008 micron in human breast, and 0.020 micron in human liver at an acoustic intensity of 1.0 W/cm2 (in water) and an operating frequency of 10 MHz. While the displacement generated in the vitreous should be readily detectable using ultrasonic methods, the displacements generated in the breast and liver will be much more difficult to detect. Methods are also developed for predicting the time dependent temperature increases associated with attenuated acoustic fields in the absence of perfusion. These results indicate promise for radiation force imaging in the vitreous, but potential difficulties in applying these techniques in other parts of the body.  相似文献   

5.
Consistent optical and acoustic techniques have been used to study the structure of hydrodynamic disturbances and acoustic signals generated as a free falling drop penetrates water. The relationship between the structures of hydrodynamic and acoustic perturbations arising as a result of a falling drop contacting with the water surface and subsequent immersion into water is traced. The primary acoustic signal is characterized, in addition to stably reproduced features (steep leading edge followed by long decay with local pressure maxima), by irregular high-frequency packets, which are studied for the first time. Reproducible experimental data are used to recognize constant and variable components of the primary acoustic signal.  相似文献   

6.
A typical membrane-based acoustic metamaterial has been reconfigured into an array of semi-flexi-walled membrane-based Helmholtz resonators to design a novel 4 port device which demultiplexes an incoming broadband acoustic signal into frequency ranges where negative modulus, density and extra-ordinary transmission behaviour exist. It has two ports exhibiting identical transfer functions and for input given in any of these ports, the device operates as a 3 port demultiplexer. The device is asymmetric in its functionality both in its degree of demultiplexing and bandwidths of the demultiplexed spectrum. Theoretical analysis of this acoustic demux is carried out by modelling it as a combination of two independent physical systems and is further validated by full-wave analysis.  相似文献   

7.
In acoustic emission (AE) measurement, the information of the arrival time is very important for event location, event identification and source mechanism analysis. Manual picks are time-consuming and sometimes subjective, especially in the case of large volumes of digital data. Various techniques have been presented in the literature and are routinely used in practice such as amplitude threshold, analysis of the long-term average/short-term average (LTA/STA), high-order statistics or artificial neural networks.A new automatic determination technique of the first arrival times of AE signals is presented for thin metal plates. Based on Akaike’s information criterion, proposed algorithm of the first arrival detection uses a specific characteristic function, which is sensitive to change of frequency in contrast to others such as envelope of the signal. The approach is applied to data sets of three different tests. Reliable results show the potential of our approach.  相似文献   

8.
Brillouin scattering experiments are carried out to study the surface acoustic waves in Nd0.5Sr0.5MnO3 as a function of temperature in the range of 40-300 K covering the metal-insulator and charge-ordering phase transitions. The surface modes include surface Rayleigh wave, pseudo-surface acoustic wave (PSAW) and high velocity PSAW. The observed softening of the sound velocities for the surface modes below paramagnetic to ferromagnetic transition, Tc is related to the softening of the C44 elastic constant. The subsequent hardening of the sound velocity below the charge ordering transition temperature Tco is attributed to the coupling of the acoustic phonon to the charge ordered state via long range ordering of the strong Jahn-Teller (JT) distortion.  相似文献   

9.
Mitri FG 《Ultrasonics》2005,43(4):271-277
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.  相似文献   

10.
A new experimental method has been devised that directly determines the group velocities of surface acoustic waves. A point source and a point detector are employed to measure the ultrasonic transmission across a solid surface as a continuous function of the propagation direction. Results for single pulses give the times-of-flight for both Rayleigh surface waves (RSW's) and pseudo-surface-waves (PSW's). Calculations and measurements of the group velocities of the surface waves on silicon show some unanticipated behavior: fluid loading qualitiatively changes the group velocity curves for both RSW and PSW. In particular, the RSW branch gains an additional component which we denote here as an induced Rayleigh wave (IRW). If a wave train is employed in the experiment, the analog of phonon focusing is observed for the ultrasonic waves, modified by internal-diffraction effects. Systematic measurements of the wave intensities on silicon as a function of propagation distance are consistent with expected acoustic losses into the surrounding water: the attenuation length of a wave depends on the mode and frequency. A survey of surface-wave images on other crystals is included in this study.  相似文献   

11.
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.  相似文献   

12.
郝潇潇  王真  赵志高  沈敏 《应用声学》2021,40(6):904-910
以广义斯奈尔定律为理论依据,对五模声学超表面定向反射的基本原理进行了解析推导和理论分析,获得了五模超表面的理想连续物性参数分布,并给出了五模超表面尺寸设计准则;然后将超表面离散,获得离散单胞的密度和体积模量,并以此为目标进行五模微结构设计,采用均匀化理论计算微结构的等效物性参数;最后,进行了水下声场的声波定向反射调控仿真实验,研究了入射波频率对超表面定向反射性能的影响,仿真结果展现了五模超表面宽频有效的声波调控能力以及调控的可靠性和准确性。本文的研究工作为五模声学超表面的设计和物理实现提供理论指导。  相似文献   

13.
This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency.  相似文献   

14.
The analysis of transient wave scattering from rigid bodies using integral equation-based techniques is computationally intensive: if carried out using classical schemes, the evaluation of the velocity potential on the surface of a three-dimensional scatterer, represented in terms of Ns spatial basis functions for Nt time steps, requires O(NtNs2) operations. The recently developed plane wave time domain (PWTD) algorithm permits the rapid evaluation of transient fields that are generated by bandlimited source distributions. It has been shown that incorporation of the PWTD algorithm into integral equation-based solvers in a two-level setting reduces the computational complexity of a transient analysis to O(NtNs1.5 logNs). In this paper, it is shown that casting the PWTD scheme into a multilevel framework permits the analysis of transient acoustic surface scattering phenomena in O(NtNslog2Ns) operations using O(NtNs) memory. Numerical examples that demonstrate the efficacy of the multilevel implementation are also presented.  相似文献   

15.
The experiments reported in this paper were carried out in a water tank in which a random medium was generated by convective mixing from an array of heaters. An approximate thermodynamic model of the medium was derived. Temperature measurements were made which showed that the temperature microstructure created in this way could be considered as a passive additive of turbulence. Furthermore, it was possible to characterize the random refractive index in terms of a spectral distribution by using an adapted version of a spectrum proposed by Medwin for the upper ocean. By using the adapted Medwin model and the single-scatter theoretical results of Tatarski, theoretical estimates were obtained of the fluctuations of an acoustic signal propagating in this particular medium. Experiments were carried out to measure acoustic signal amplitude fluctuations at frequencies of 9 MHz and 1 MHz. The empirical results were in agreement with the theoretical estimates. Measurements are also reported for the spatial correlation functions of the acoustic signal amplitude fluctuations. The results are discussed in the light of currently available theoretical results.  相似文献   

16.
The directivity of acoustic transducers used in conventional acoustic logging tools is uncontrollable[1,2], which inevitably affects investigation depth and resolution. At present, deep and wide range of investigation in petroleum exploration is urgently re- quired. It is important to improve the exploration capability to find more complex and fine reservoirs[3], for which the direction of the radiated acoustic energy is a direct factor. Acoustic field in the formations generated by the source…  相似文献   

17.
This paper presents a combined finite element and modal decomposition method to study the interaction of Lamb waves with damaged area. The finite element mesh is used to describe the region around the defects. On the contrary to other hybrid models already developed, the interaction between Lamb waves and defects is computed in the temporal domain. Then, the modal decomposition method permits to determine the wave reflected and transmitted by the damaged area. Modal analysis allows also identifying the mode conversions induced by the defects. These numerical results agree with previous finite element results concerning the interaction of Lamb modes with a notch. Experiments, carried out with gauged defects on an aluminum plate, are also compared to numerical predictions to validate the simulation. Compared to classical techniques of simulation, this new method allows us to investigate the interaction of Lamb modes generated at high frequency-thickness product with micro-defects as corrosion pitting.  相似文献   

18.
A novel approach to the acoustic characterisation of porous road surfaces   总被引:1,自引:0,他引:1  
Porous road surfaces offer an effective means of reducing the generation and propagation of noise from road traffic. However, the porosity of these surfaces can deteriorate over time, leading to a reduction in their noise reducing properties. Efficient methods are therefore required for monitoring this performance. Existing techniques for performing in-situ measurements of acoustic absorption are unsuitable for use within the traffic stream. Static measurements using time domain Maximum Length Sequence (MLS) based techniques have been demonstrated to offer advantages over traditional techniques, presenting the opportunity for measurements under dynamic conditions. This paper describes the design of a system for carrying out dynamic MLS-based measurements. Results are presented which demonstrate that stable dynamic measurements can be carried out at speeds of up to 30 km/h.  相似文献   

19.
Underwater acoustic channels are band-limited and reverberant, posing many obstacles to reliable, phase-coherent acoustic communications. While many high frequency communication experiments have been conducted in shallow water, few have carried out systematic studies on the channel properties at a time scale relevant for communications. To aid communication system design, this paper analyzes at-sea data collected in shallow water under various conditions to illustrate how the ocean environments (sea surface waves and random ocean medium) can affect the signal properties. Channel properties studied include amplitude and phase variations, and temporal coherence of individual paths as well as the temporal and spatial coherence of multipaths at different time scales. Reasons for the coherence loss are hypothesized.  相似文献   

20.
Every AG  Deschamps M 《Ultrasonics》2003,41(7):581-591
This paper deals with the point focus beam (PFB) acoustic materials signature V(z) of an anisotropic solid, and in particular how it tends to be dominated by a limited number of principal surface rays. These rays are associated with propagation directions in which the Rayleigh wave (RW), pseudo-surface acoustic wave (PSAW) or a lateral wave slowness has an extremum. The phenomenon is interpreted in terms of the complex azimuthally averaged reflectance function of the surface, and also explained on the basis of a ray model. We illustrate the phenomenon with a number of examples, pertaining to the surfaces of single crystal copper and a carbon-fibre epoxy composite. In the case of copper, which has a much larger acoustic impedance than the water couplant, the oscillations in V(z) are dominated by principal RW and PSAW, whereas for the composite there is no RW or pseudo-SAW to be discerned with acoustic microscopy (AM), and V(z) is dominated by principal lateral waves. The utility of PFB AM in the study of anisotropic solids is further elaborated with examples showing how V(z) is sensitive to surface orientation, and how V(z) is affected by the presence of a surface over layer. The phenomena examined in this paper expand the scope for determining materials characteristics, such as elastic constants, crystallographic orientation, residual stress and over layer properties, from PFB V(z) measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号