首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thresholds for the discrimination of fundamental frequency (FODLs) and frequency difference limens (FDLs) for individual partials within a complex tone (F0=250 Hz, harmonics 1-7) were measured for stimulus durations of 200, 50, and 16 ms. The FDLs increased with decreasing duration. Although the results differed across subjects, the effect of duration generally decreased as the harmonic number increased from 1 to 4, then increased as the harmonic number increased to 6, and finally decreased for the seventh harmonic. For each duration, FODLs were smaller than the smallest FDL for any individual harmonic, indicating that information is combined across harmonics in the discrimination of FO. FODLs predicted from the FDLs corresponded well with observed FODLs for the 200- and 16-ms durations but were significantly larger than observed FODLs for the 50-ms duration. A supplementary pitch-matching experiment using two subjects indicated that the contribution of the seventh harmonic to the pitch of the 16-ms complex tone was smaller than would be predicted from the FDL for that harmonic. The results are consistent with the idea that the dominant region shifts upward with decreasing duration, but that the weight assigned to individual harmonics is not always adjusted in an optimal way.  相似文献   

2.
Frequency difference limens (FDLs) were estimated for 3-, 6-, and 12-month-old infants and for adults using pure tones at 500, 1000, and 4000 Hz. Each listener provided an FDL at 40 dB and at a higher (80 dB, in most cases) sensation level (SL). An observer-based behavioral testing technique was used. The FDLs of 3-month-olds were worse than those of adults at all three frequencies, and increased with increasing frequency. The FDLs of 6- and 12-month-olds were worse than those of adults at 500 and 1000 Hz, but not at 4000 Hz. Decreasing the SL led to an increase in the FDL of about the same magnitude at all ages, and the same age differences were found at both SLs. Thus infant-adult differences in FDL are not a simple consequence of differences in absolute sensitivity. Infant FDLs at one SL were also found to be significantly correlated with the FDL at the other SL. The FDLs at one age were, in general, predictive of the FDL at a later age in a longitudinal sample of infants. Models that might account for these age-related differences are discussed.  相似文献   

3.
Timbre is typically investigated as a perceptual attribute that differentiates a sound source at one pitch and loudness. Yet the perceptual usefulness of timbre is that it allows the listener to recognize one sound source at different pitches. This paper investigated the ability of listeners to identify which pitch in an ascending or descending sequence of three or six stimuli was sung by a different singer. For three-note sequences, the task was extremely difficult, and with rare exceptions, listeners chose the most dissimilarly pitched stimulus as coming from the oddball singer. For six-note sequences, the detection of the oddball singer was much improved in spite of the added complexity of the task. These results support the idea that timbre should be understood as a transformation that connects the different sounds of one source and that a "rich" set of sounds is necessary to discover the trajectory.  相似文献   

4.
In a series of experiments, Semal and Demany [(2006). J. Acoust. Soc. Am. 120, 3907-3915] demonstrated that some normally hearing listeners are unable to determine the direction of small but detectable differences in frequency between pure tones. Unlike studies demonstrating similar effects in patients with brain damage, the authors used stimuli in which the standard frequency of the tones was highly uncertain (roved) over trials. In Experiment 1, listeners were identified as insensitive to the direction of pitch changes using stimuli with frequency roving. When listeners were retested using stimuli without roving in Experiment 2, impairments in pitch-direction identification were generally much less profound. In Experiment 3, frequency-roving range had a systematic effect on listeners' thresholds, and impairments in pitch-direction identification tended to occur only when the roving range was widest. In Experiment 4, the influence of frequency roving was similar for continuous frequency changes as for discrete changes. Possible explanations for the influence of roving on listeners' insensitivity to pitch-change direction are discussed.  相似文献   

5.
The perception of fundamental pitch for two-harmonic complex tones was examined in musically experienced listeners with cochlear-based high-frequency hearing loss. Performance in a musical interval identification task was measured as a function of the average rank of the lowest harmonic for both monotic and dichotic presentation of the harmonics at 14 dB Sensation Level. Listeners with hearing loss demonstrated excellent musical interval identification at low fundamental frequencies and low harmonic numbers, but abnormally poor identification at higher fundamental frequencies and higher average ranks. The upper frequency limit of performance in the listeners with hearing loss was similar in both monotic and dichotic conditions. These results suggest that something other than frequency resolution per se limits complex-tone pitch perception in listeners with hearing loss.  相似文献   

6.
Experiment 1 measured pure-tone frequency difference limens (DLs) at 1 and 4 kHz. The stimuli had two steady-state portions, which differed in frequency for the target. These portions were separated by a middle section of varying length, which consisted of a silent gap, a frequency glide, or a noise burst (conditions: gap, glide, and noise, respectively). The noise burst created an illusion of the tone continuing through the gap. In the first condition, the stimuli had an overall duration of 500 ms. In the second condition, stimuli had a fixed 50-ms middle section, and the overall duration was varied. DLs were lower for the glide than for the gap condition, consistent with the idea that the auditory system contains a mechanism specific for the detection of dynamic changes. DLs were generally lower for the noise than for the gap condition, suggesting that this mechanism extracts information from an illusory glide. In a second experiment, pure-tone frequency direction-discrimination thresholds were measured using similar stimuli as for the first experiment. For this task, the type of the middle section hardly affected the thresholds, suggesting that the frequency-change detection mechanism does not facilitate the identification of the direction of frequency changes.  相似文献   

7.
The ability to discriminate between sounds with different spectral shapes was evaluated for normal-hearing and hearing-impaired listeners. Listeners detected a 920-Hz tone added in phase to a single component of a standard consisting of the sum of five tones spaced equally on a logarithmic frequency scale ranging from 200 to 4200 Hz. An overall level randomization of 10 dB was either present or absent. In one subset of conditions, the no-perturbation conditions, the standard stimulus was the sum of equal-amplitude tones. In the perturbation conditions, the amplitudes of the components within a stimulus were randomly altered on every presentation. For both perturbation and no-perturbation conditions, thresholds for the detection of the 920-Hz tone were measured to compare sensitivity to changes in spectral shape between normal-hearing and hearing-impaired listeners. To assess whether hearing-impaired listeners relied on different regions of the spectrum to discriminate between sounds, spectral weights were estimated from the perturbed standards by correlating the listener's responses with the level differences per component across two intervals of a two-alternative forced-choice task. Results showed that hearing-impaired and normal-hearing listeners had similar sensitivity to changes in spectral shape. On average, across-frequency correlation functions also were similar for both groups of listeners, suggesting that as long as all components are audible and well separated in frequency, hearing-impaired listeners can use information across frequency as well as normal-hearing listeners. Analysis of the individual data revealed, however, that normal-hearing listeners may be better able to adopt optimal weighting schemes. This conclusion is only tentative, as differences in internal noise may need to be considered to interpret the results obtained from weighting studies between normal-hearing and hearing-impaired listeners.  相似文献   

8.
The goal of this study was to measure the ability of adult hearing-impaired listeners to discriminate formant frequency for vowels in isolation, syllables, and sentences. Vowel formant discrimination for F1 and F2 for the vowels /I epsilon ae / was measured. Four experimental factors were manipulated including linguistic context (isolated vowels, syllables, and sentences), signal level (70 and 95 dB SPL), formant frequency, and cognitive load. A complex identification task was added to the formant discrimination task only for sentences to assess effects of cognitive load. Results showed significant elevation in formant thresholds as formant frequency and linguistic context increased. Higher signal level also elevated formant thresholds primarily for F2. However, no effect of the additional identification task on the formant discrimination was observed. In comparable conditions, these hearing-impaired listeners had elevated thresholds for formant discrimination compared to young normal-hearing listeners primarily for F2. Altogether, poorer performance for formant discrimination for these adult hearing-impaired listeners was mainly caused by hearing loss rather than cognitive difficulty for tasks implemented in this study.  相似文献   

9.
Three experiments examined the ability of listeners to identify steady-state synthetic vowel-like sounds presented concurrently in pairs to the same ear. Experiment 1 confirmed earlier reports that listeners identify the constituents of such pairs more accurately when they differ in fundamental frequency (f0) by about a half semitone or more, compared to the condition where they have the same f0. When the constituents have different f0's, corresponding harmonics of the two vowels are misaligned in frequency and corresponding pitch periods are asynchronous in time. These differences provide cues that might aid identification. Experiments 2 and 3 determined whether listeners can use these cues, divorced from a difference in f0, to improve their accuracy of identification. Harmonic misalignment was beneficial when the constituents had an f0 of 200 Hz so that the harmonics of each constituent were well separated in frequency. Pitch-period asynchrony was beneficial when the constituents had an f0 of 50 Hz so that the onsets of the pitch periods of each constituent were well separated in time. Neither cue was beneficial when both constituents had an f0 of 100 Hz. It is unlikely, therefore, that either cue contributed to the improvement in performance found in Experiment 1 where the constituents were given different f0's close to 100 Hz. Rather, it is argued that performance improved in Experiment 1 primarily because the two f0's specified two pitches that could be used to segregate the contributions of each vowel in the composite waveform.  相似文献   

10.
The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.  相似文献   

11.
The relationship between auditory perception and vocal production has been typically investigated by evaluating the effect of either altered or degraded auditory feedback on speech production in either normal hearing or hearing-impaired individuals. Our goal in the present study was to examine this relationship in individuals with superior auditory abilities. Thirteen professional musicians and thirteen nonmusicians, with no vocal or singing training, participated in this study. For vocal production accuracy, subjects were presented with three tones. They were asked to reproduce the pitch using the vowel /a/. This procedure was repeated three times. The fundamental frequency of each production was measured using an autocorrelation pitch detection algorithm designed for this study. The musicians' superior auditory abilities (compared to the nonmusicians) were established in a frequency discrimination task reported elsewhere. Results indicate that (a) musicians had better vocal production accuracy than nonmusicians (production errors of 1/2 a semitone compared to 1.3 semitones, respectively); (b) frequency discrimination thresholds explain 43% of the variance of the production data, and (c) all subjects with superior frequency discrimination thresholds showed accurate vocal production; the reverse relationship, however, does not hold true. In this study we provide empirical evidence to the importance of auditory feedback on vocal production in listeners with superior auditory skills.  相似文献   

12.
研究了光分组交换网络中的两种竞争解决方案.结合课题研究的进展,基于突发和非突发业务,对这两种竞争处理结构进行了深入分析,得出了几点重要结论,首先,在竞争处理上,对于非突发业务,光纤延迟线比可调谐波长转换器有效;而对于突发业务而言,可调谐波长转换器比光纤延迟线有效.其次,在突发业务下反馈式光纤延迟线结构(FFA)是一种较为理想的竞争解决结构,但对非突发业务而言,反馈式光纤延迟线和可调谐波长转换器结构(FFTA)在成本上和结构尺寸上比FFA要有效的多.随着平均突发长度的增加,FFTA中的可调谐波长转换器数目也要增加才能获得合理的分组丢失率。但无论是针对突发业务还是非突发业务,FFTA都是一种成本有效的竞争解决结构.  相似文献   

13.
In face-to-face speech communication, the listener extracts and integrates information from the acoustic and optic speech signals. Integration occurs within the auditory modality (i.e., across the acoustic frequency spectrum) and across sensory modalities (i.e., across the acoustic and optic signals). The difficulties experienced by some hearing-impaired listeners in understanding speech could be attributed to losses in the extraction of speech information, the integration of speech cues, or both. The present study evaluated the ability of normal-hearing and hearing-impaired listeners to integrate speech information within and across sensory modalities in order to determine the degree to which integration efficiency may be a factor in the performance of hearing-impaired listeners. Auditory-visual nonsense syllables consisting of eighteen medial consonants surrounded by the vowel [a] were processed into four nonoverlapping acoustic filter bands between 300 and 6000 Hz. A variety of one, two, three, and four filter-band combinations were presented for identification in auditory-only and auditory-visual conditions: A visual-only condition was also included. Integration efficiency was evaluated using a model of optimal integration. Results showed that normal-hearing and hearing-impaired listeners integrated information across the auditory and visual sensory modalities with a high degree of efficiency, independent of differences in auditory capabilities. However, across-frequency integration for auditory-only input was less efficient for hearing-impaired listeners. These individuals exhibited particular difficulty extracting information from the highest frequency band (4762-6000 Hz) when speech information was presented concurrently in the next lower-frequency band (1890-2381 Hz). Results suggest that integration of speech information within the auditory modality, but not across auditory and visual modalities, affects speech understanding in hearing-impaired listeners.  相似文献   

14.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

15.
The influence of different memory systems and associated attentional processes on the acuity of auditory images, formed for the purpose of making intonation judgments, was examined across three experiments using three different task types (cued-attention, imagery, and two-tone discrimination). In experiment 1 the influence of implicit long-term memory for musical scale structure was manipulated by varying the scale degree (leading tone versus tonic) of the probe note about which a judgment had to be made. In experiments 2 and 3 the ability of short-term absolute pitch knowledge to develop was manipulated by presenting blocks of trials in the same key or in seven different keys. The acuity of auditory images depended on all of these manipulations. Within individual listeners, thresholds in the two-tone discrimination and cued-attention conditions were closely related. In many listeners, cued-attention thresholds were similar to thresholds in the imagery condition, and depended on the amount of training individual listeners had in playing a musical instrument. The results indicate that mental images formed at a sensory/cognitive interface for the purpose of making perceptual decisions are highly malleable.  相似文献   

16.
"Masking release" (MR), the improvement of speech intelligibility in modulated compared with unmodulated maskers, is typically smaller than normal for hearing-impaired listeners. The extent to which this is due to reduced audibility or to suprathreshold processing deficits is unclear. Here, the effects of audibility were controlled by using stimuli restricted to the low- (≤1.5 kHz) or mid-frequency (1-3 kHz) region for normal-hearing listeners and hearing-impaired listeners with near-normal hearing in the tested region. Previous work suggests that the latter may have suprathreshold deficits. Both spectral and temporal MR were measured. Consonant identification was measured in quiet and in the presence of unmodulated, amplitude-modulated, and spectrally modulated noise at three signal-to-noise ratios (the same ratios for the two groups). For both frequency regions, consonant identification was poorer for the hearing-impaired than for the normal-hearing listeners in all conditions. The results suggest the presence of suprathreshold deficits for the hearing-impaired listeners, despite near-normal audiometric thresholds over the tested frequency regions. However, spectral MR and temporal MR were similar for the two groups. Thus, the suprathreshold deficits for the hearing-impaired group did not lead to reduced MR.  相似文献   

17.
Le?ger et al. [J. Acoust. Soc. Am. 131, 1502-1514 (2012)] reported deficits in the identification of consonants in noise by hearing-impaired listeners using stimuli filtered into low- or mid-frequency regions in which audiometric thresholds were normal or near-normal. The deficits could not be fully explained in terms of reduced audibility or temporal-envelope processing. However, previous studies indicate that the listeners may have had reduced frequency selectivity, with auditory filters broadened by a factor of about 1.3, despite having normal or near-normal audiometric thresholds in the tested regions. The present study aimed to determine whether the speech-perception deficits could be explained by such a small reduction of frequency selectivity. Consonant identification was measured for normal-hearing listeners in quiet and in unmodulated and modulated noises using the same method as Le?ger et al. The signal-to-noise ratio was set to -3 dB for the masked conditions. Various amounts of reduced frequency selectivity were simulated using a spectral-smearing algorithm. Performance was reduced only for spectral-smearing factors greater than 1.7. For all conditions, identification scores for hearing-impaired listeners could not be explained by a mild reduction of frequency selectivity.  相似文献   

18.
Iterated rippled noise (IRN) is generated by a cascade of delay and add (the gain after the delay is 1.0) or delay and subtract (the gain is -1.0) operations. The delay and add/subtract operations impart a spectral ripple and a temporal regularity to the noise. The waveform fine structure is different in these two conditions, but the envelope can be extremely similar. Four experiments were used to determine conditions in which the processing of IRN stimuli might be mediated by the waveform fine structure or by the envelope. In experiments 1 and 3 listeners discriminated among three stimuli in a single-interval task: IRN stimuli generated with the delay and add operations (g = 1.0), IRN stimuli generated using the delay and subtract operations (g = -1.0), and a flat-spectrum noise stimulus. In experiment 2 the listeners were presented two IRN stimuli that differed in delay (4 vs 6 ms) and a flat-spectrum noise stimulus that was not an IRN stimulus. In experiments 1 and 2 both the envelope and waveform fine structure contained the spectral ripple and temporal regularity. In experiment 3 only the envelope had this spectral and temporal structure. In all experiments discrimination was determined as a function of high-pass filtering the stimuli, and listeners could discriminate between the two IRN stimuli up to frequency regions as high as 4000-6000 Hz. Listeners could discriminate the IRN stimuli from the flat-spectrum noise stimulus at even higher frequencies (as high as 8000 Hz), but these discriminations did not appear to depend on the pitch of the IRN stimuli. A control experiment (fourth experiment) suggests that IRN discriminations in high-frequency regions are probably not due entirely to low-frequency nonlinear distortion products. The results of the paper imply that pitch processing of IRN stimuli is based on the waveform fine structure.  相似文献   

19.
Spectral integration refers to the summation of activity beyond the bandwidth of the peripheral auditory filter. Several experimental lines have sought to determine the bandwidth of this "supracritical" band phenomenon. This paper reports on two experiments which tested the limit on spectral integration in the same listeners. Experiment I verified the critical separation of 3.5 bark in two-formant synthetic vowels as advocated by the center-of-gravity (COG) hypothesis. According to the COG effect, two formants are integrated into a single perceived peak if their separation does not exceed approximately 3.5 bark. With several modifications to the methods of a classic COG matching task, the present listeners responded to changes in pitch in two-formant synthetic vowels, not estimating their phonetic quality. By changing the amplitude ratio of the formants, the frequency of the perceived peak was closer to that of the stronger formant. This COG effect disappeared with larger formant separation. In a second experiment, auditory spectral resolution bandwidths were measured for the same listeners using common-envelope, two-tone complex signals. Results showed that the limits of spectral averaging in two-formant vowels and two-tone spectral resolution bandwidth were related for two of the three listeners. The third failed to perform the discrimination task. For the two subjects who completed both tasks, the results suggest that the critical region in vowel task and the complex-tone discriminability estimates are linked to a common mechanism, i.e., to an auditory spectral resolving power. A signal-processing model is proposed to predict the COG effect in two-formant synthetic vowels. The model introduces two modifications to Hermansky's [J. Acoust. Soc. Am. 87, 1738-1752 (1990)] perceptual linear predictive (PLP) model. The model predictions are generally compatible with the present experimental results and with the predictions of several earlier models accounting for the COG effect.  相似文献   

20.
It is difficult to hear out individually the components of a "chord" of equal-amplitude pure tones with synchronous onsets and offsets. In the present study, this was confirmed using 300-ms random (inharmonic) chords with components at least 1/2 octave apart. Following each chord, after a variable silent delay, listeners were presented with a single pure tone which was either identical to one component of the chord or halfway in frequency between two components. These two types of sequence could not be reliably discriminated from each other. However, it was also found that if the single tone following the chord was instead slightly (e.g., 1/12 octave) lower or higher in frequency than one of its components, the same listeners were sensitive to this relation. They could perceive a pitch shift in the corresponding direction. Thus, it is possible to perceive a shift in a nonperceived frequency/pitch. This paradoxical phenomenon provides psychophysical evidence for the existence of automatic "frequency-shift detectors" in the human auditory system. The data reported here suggest that such detectors operate at an early stage of auditory scene analysis but can be activated by a pair of sounds separated by a few seconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号