首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.  相似文献   

2.
In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.  相似文献   

3.
In this paper, a smooth repetitive oscillating wave traveling down the elastic walls of a non-uniform twodimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method(HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio ?, Hartmann number M, and Sisko fluid parameter b1. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.  相似文献   

4.
We image the flow of a nearly random close packed, hard-sphere colloidal suspension (a "paste") in a square capillary using confocal microscopy. The flow consists of a "plug" in the center while shear occurs localized adjacent to the channel walls, reminiscent of yield-stress fluid behavior. However, the observed scaling of the velocity profiles with the flow rate strongly contrasts yield-stress fluid predictions. Instead, the velocity profiles can be captured by a theory of stress fluctuations originally developed for chute flow of dry granular media. We verified this both for smooth and rough walls.  相似文献   

5.
滑移流区内微环缝槽道中的层流流动与换热   总被引:7,自引:0,他引:7  
本文针对微环缝槽道采用速度滑移和温度跳跃边界条件求解了不可压缩气体的N-S方程和能量方程,理论分析了微环缝槽道在单侧或双侧不同热流密度加热条件下的流动与层流换热特性,讨论了Kn数、内外径比对流动阻力及换热特性的影响。结果表明:滑移流区微环继通道内的流阻和Nusselt数明显低于连续流区;且随着Kn数的增加,流阻和Nusselt数均减小;但其随内外径比r*的变化趋势与连续流区相似。  相似文献   

6.
The problem of steady two-dimensional laminar flow in slip flow regime of a viscous incompressible and electrically conducting fluid through an inclined channel of rectangular cross-section in presence of a transverse magnetic field has been considered. The walls of the channel are assumed to have prescribed temperatures and finite conductivities. The expressions for the velocity component, induced magnetic field and the temperature are obtained and their numerical results are shown graphically.  相似文献   

7.
We study the effects of non-parallel (diverging or converging) channel walls on flame propagation and acceleration in planar and cylindrical narrow channels, closed at the ignition end and open at the other, accounting for thermal expansion in both the zero Mach number and weakly compressible flow limits. For parallel channel walls, previous work has shown that thermal expansion induces an axial flow in the channel, which can significantly increase the propagation speed and acceleration of the flame. In this study, we consider examples of diverging/converging linear walls, although our asymptotic analysis is also valid for curved walls. The slope of the channel walls is chosen so that the magnitude of the thermal-expansion induced flow through the channel obtained for parallel walls is modified at leading-order, thereby influencing the leading-order flame propagation. For zero Mach number flows, the effect of the diverging/converging channel walls is moderate. However, for weakly compressible flows, the non-parallel walls directly affect the rate at which pressure diffuses through the channel, significantly inhibiting flame acceleration for diverging walls, whereas the flame acceleration process is enhanced for converging walls. We consider several values of the compressibility factor and channel wall slopes. We also show that the effect of a cylindrical channel geometry can act to significantly enhance flame acceleration relative to planar channels. The study reveals several new physical insights on how non-parallel channel walls can influence the ability of flames to accelerate by modifying the flow and pressure distribution induced by thermal expansion.  相似文献   

8.
梅涛  陈占秀  杨历  王坤  苗瑞灿 《物理学报》2019,68(9):94701-094701
纳米流动系统具有高效、经济等优势,在众多领域具有广泛的应用前景.因该类系统具有极高的表面积体积比,致使界面滑移效应对流动具有显著影响.本文采用分子动力学方法以两无限大平行非对称壁面组成的Poiseuille流动为对象,分析了壁面粗糙度与润湿性变化对通道内流体流动的影响.对于不同结构类型的壁面,需要通过水动力位置来确定固液界面位置,准确计算固液界面位置有助于更好地分析界面滑移效应.研究结果表明,上下壁面不对称会引起通道内流场参数分布的不对称,壁面粗糙度及润湿性的变化会影响近壁面附近流体原子的流动特性,由于壁面凹槽的存在,粗糙壁面附近的数密度分布低于光滑壁面一侧.壁面粗糙度及润湿性的变化会影响固液界面位置,肋高变化及壁面润湿性对通道中速度分布影响较大,界面滑移速度及滑移长度随肋高和润湿性的增大而减小;肋间距变化对通道内流体流动影响较小,界面滑移速度和滑移长度基本保持恒定.  相似文献   

9.
Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.  相似文献   

10.
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.  相似文献   

11.
Time-dependent flow of a viscoelastic material through a wavy curved channel is studied. The flow traversing the wavy curved domain is modelled in the curvilinear coordinates. The viscoelastic fluid is described by the fluid relaxation and retardation times, and their variations are considered in relation to the flow characteristic time scale. The wavy walls of the curved channels are in sinusoidal form, with arbitrary phase difference. Using domain perturbation technique, the analytical solution of the model is obtained, including the velocity and the volumetric flow rate. The analytical solution is explained as a function of the flow domain structure, the viscoelastic fluid properties, and the flow generating force. Flow enhancement due to the flow domain is discussed; we have shown that the flow augmentation depends on the properties of the viscoelastic fluid. Furthermore, comparisons have been made with Newtonian fluid flow, and the prominent variations in the flow behaviours have been reported.  相似文献   

12.
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.  相似文献   

13.
Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.  相似文献   

14.
The hydromagnetic slip flow of a viscous incompressible and electrically conducting fluid through an inclined channel of rectangular cross section in the presence of a transverse magnetic field has been analysed. The walls of the channel are assumed to have prescribed temperatures and finite conductivities. The boundary conditions for both velocity and temperature are properly rectified. The expressions for the velocity, induced magnetic field and the temperature are obtained both analytically and numerically.  相似文献   

15.
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.  相似文献   

16.
Results of experimental investigation of the bubbly gas-liquid flow in a vertical annular channel are presented. The average and pulsation shear stresses and distributions of local void fraction were measured by the electrochemical method on both channel walls. It is shown that with a rise of gas flow rate ratio the value of wall shear stress increases significantly, and this effect becomes higher at a decrease in superficial liquid velocity. A presence of the gas phase effects significantly shear stress on the inner wall. Relative intensity of shear stress pulsations increases similarly on both channel walls.  相似文献   

17.
Magnetohydrodynamic (MHD) flow through a corrugated curved channel is modelled. The flow is perpendicular to the corrugations and applied magnetic field. A boundary perturbation analysis for small corrugation amplitude is used to find the expressions for the stream function and the flow rate. It is found that the flow is inevitably decreased by the corrugations. For a given Hartmann number, the flow reduction varies with the channel radius of curvature. The effect of the phase difference between the corrugated walls is distinct, with minimum and maximum effects when the corrugated curved walls are in-phase and out-of-phase, respectively, for small corrugation wavenumber. However, when the corrugation wavenumber is large enough, the flow is independent of the phase difference. Generally, the study shows that the Hartmann number decreases the effect of the corrugations on the flow rate.  相似文献   

18.
A. Ebaid 《Physics letters. A》2008,372(24):4493-4499
The effects of both magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel are studied analytically and numerically. The channel asymmetry is generated by propagation of waves on the channel walls travelling with different amplitudes, phases but with the same speed. The long wavelength and low Reynolds number assumptions are considered in obtaining solution for the flow. The flow is investigated in a wave frame of reference moving with velocity of the wave. Closed form expressions have been obtained for the stream function and the axial velocity component in fixed frame. The effects of phase difference, Knudsen number and magnetic field on the pumping characteristics and velocity field are discussed. Several known results of interest are found to follow as particular cases of the solution of the problem considered.  相似文献   

19.
The flow of a micropolar fluid in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using similar transformations. Homotopy analysis method (HAM) is employed to obtain the expressions for the velocity fields and microrotation fields. Graphs are sketched for the effects of some values of parameters, especially the expansion ratio, on the velocity and microrotation fields and associated dynamic characteristics are analyzed in detail.  相似文献   

20.
The problem of the nonstationary flow of a viscous incompressible fluid in a flat diffuser containing a hinged partition in the form of a reverse vane directed toward the flow is considered. The mechanism of excitation and maintenance of the angular auto-oscillation regime of the vane is revealed, accompanied by shock interaction of the vane sock with the channel walls and the formation of two antiphase pulsating jets at the exit from the diffuser. This mode is reproduced in a physical experiment and in numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号