首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
管内对流换热的场协同分析及换热强化   总被引:27,自引:2,他引:25  
导出管内湍流换热Nu与局域时均参数的关系式,将对流换热的场协同理论扩展至湍流换热。分析了管内对流换热的特点,并根据场协同理论提出强化湍流换热的方法,发展了一种新型强化换热管一交叉椭圆管,既适合于层流换热强化也适合于湍流换热强化,其强化传热效果显著而流阻较小。  相似文献   

2.
场协同理论在交变流动缝隙式回热器中的数值验证   总被引:1,自引:0,他引:1  
本文对缝隙式回热器在非稳态交交流动下的流动和换热问题做了二维的数值模拟,并重点对其在交交流动下的场协同问题做了计算与分析。数值计算表明,场协同原理作为指导强化对流换热的原则,同样可以指导交交流动下的换热强化。  相似文献   

3.
本文从场协同的角度分析工质在蒸发器毛细芯中的流动与传热情况,针对不同的蒸发器肋片结构参数、毛细多孔芯厚度以及不同的热流密度进行了数值分析。结果表明,利用场协同原理,可以解释不同的蒸发器结构参数和热负荷对蒸发器传热效果的影响,从而为优化蒸发器结构,提高CPL效能提供理论依据。  相似文献   

4.
本文运用量级分析和渐进展开匹配方法推导了适用于旋转系统流动分离的渐进结构方程,此方程具有三层结构的特点,每层有不同的流动性质,层与层之间通过匹配关系联系起来,旋转效应在渐进结构中不出现。由于层间参数的传递反映了该方程及其定解条件的椭圆型特征,加之三层区域的精细结构,该方程为激波/边界层干扰的计算提供了手段。  相似文献   

5.
平板通道振荡流动强化轴向导热的数值研究   总被引:3,自引:0,他引:3  
本文对平板通道振荡流动强化轴向导热现象进行了数值模拟。计算结果显示,在所计算的振荡频率范围内振荡频率越小,平均虚拟内热源越大,速度场和温度场之间的相位差也越小,表明速度场和温度场的协同程度也越好,因此轴向导热的强化非常显著。  相似文献   

6.
定量磁化率成像(QSM)利用一般成像技术舍弃的相位信息得到局部磁场变化特性,通过复杂的场到源反演计算,可直接得到定量的磁化率图,它广泛应用于测量血氧饱和度、脑部微出血、铁沉积、组织钙化等方面.然而,梯度磁场中流动会引起相位错误,并且产生显著的流动伪影,最终得到错误的QSM图像.为了矫正流动的影响,该文在3 T磁共振系统上实现了三维多回波流动补偿梯度回波序列,并用该序列采集流动水模和志愿者颅脑数据.流动水模和颅脑数据均显示,流动补偿能够明显矫正相位错误,消除流动伪影.颅脑横断位QSM结果证明,流动补偿序列可以消除血液流动引起的QSM的错误,提高QSM的准确性.  相似文献   

7.
针对不同结垢厚度的圆管进行数值模拟,分析在层流和紊流两种流动状态下,污垢对速度场和温度场以及它们之间的协同程度-协同角及协同数的影响.数值模拟结果表明,对于层流和紊流,其平均场协同数均随着污垢厚度的增加而增加,随着雷诺数的增加而减小;平均场协同角则相反;紊流时场协同数大于层流时的场协同数,协同角小于层流时的协同角;紊流...  相似文献   

8.
微细光滑圆管内气体流动阻力特性的实验研究   总被引:1,自引:0,他引:1  
本文采用内径为84.7μm及144.4μm的玻璃圆管作为实验管,对微细管内气体流动的阻力特性进行了实验研究.结果表明,层流状态下,微细圆管内气体流动的摩擦系数大于不可压、充分发展管内流动的数值.其物理机制为:微细圆管内气体流动的可压缩性导致速度抛面偏高抛物线分布,使得壁面处的速度梯度增加,摩擦阻力增大.  相似文献   

9.
采用流动显示和对流场进行连续延时曝光的拍摄方法,得到了非定常流场的流动图象,并在影片分析处理系统上完成了对流动图案的数量化处理。在此基础上,定义了参数Φ(k),用来评价Froude,Reynold和Weber准则对流动形态的影响。确定了薄壁铸件反重力充型过程水力学相似的必要条件。  相似文献   

10.
注塑模充模过程动态分析的有限元/控制体积法   总被引:5,自引:0,他引:5  
塑料熔体在三维薄壁型腔内的流动属于带有运动边界的粘性不可压流体的流动,基于粘性广义Hele-Shaw流动理论,利用控制体积法建立了求解压力场的有限元方程,耦合利用有限元控制体积法自动跟踪熔体的运动边界,实现了充模过程的动态模拟.  相似文献   

11.
纵向涡发生器强化传热的研究历程及进展   总被引:1,自引:0,他引:1  
首先简要回顾了纵向涡发生器的发展历程,对前人进行的关于纵向涡发生器的实验研究和数值分析进行了归纳分析,并运用场协同原理对纵向涡强化换热的机理进行了初步分析。最终得出结论,对以后纵向涡发生器的发展和研究给出具体意见,认为系统地了解纵向涡发生器各种各样的几何参数对换热和压降的影响,对于将纵向涡发生器成功地用于紧凑式换热器是非常重要的。  相似文献   

12.
采用曲线坐标系下压力与速度耦合的SIMPLER算法,数值研究了波纹通道内脉动流动与换热情况,流动Re数的范围为5~500,Pr数为0.7.计算考察了脉动参数如脉动频率和振幅对通道内强化传热和压力损失的影响.研究结果表明,流动阻力特性呈周期性余弦规律变化,换热Nu数呈正弦规律变化;频率、振幅的增大,使得阻力脉动幅度增大.受入口脉动流的影响,通道内的旋涡发生周期性的脱落、增长和迁移,从而增强了流体之间的扰动和掺混,强化了传热;传热的强化效果随着振幅的增大而增强,但在特定入口脉动流下,相同振幅不同频率下的强化效果几乎一致.  相似文献   

13.
本文从椭圆的特性出发,导出了椭圆筒壁的传热方程以及温度分布,给出了椭圆筒壁的传热特性与椭圆几何参数及换热系数之间的关系;探讨了椭圆几何参数对最大换热量及临界热绝缘厚度的影响;查明了椭圆筒壁传热按圆筒壁处理的条件。  相似文献   

14.
本文对单相水和单相油横掠流动时的平均换热特性进行了实验研究,对试验的结果进行了分析和讨论,并对实验数据进行关联,得到了垂直上升管内单相水和单相油横掠流动时的换热准则关系式。结果表明,狭窄空间条件下的液体横掠柱体时的流动换热对液相Re数的依赖,较大空间条件下的流动换热相比明显减小,并对单相水和单相油横掠流动时的换热性能进行了比较。  相似文献   

15.
本文对反应堆压力容器紧急安注时的流动与传热特性在1/10的模型上进行了流动可视化、局部传热系数以及混合函数的试验研究。针对三个热冲击敏感区域的部分测点,比较了环腔流速为0.5m/s、安注流速为1~30 m/s时不同含气率对下降环腔内流动与传热特性的影响,得出并分析了不同测点传热系数、混合函数的变化规律。研究结果表明:随着含气率增大,安注流体与环腔流体的混合增强;下降环腔内的含气率对小安注流速时的流动与传热影响显著,而对大安注流速时影响较小。  相似文献   

16.
He Ⅱ强制流动系统输送压差预测   总被引:1,自引:0,他引:1  
系统输送压力对于He II强制流动输送系统而言至关重要,因此在系统运行之前,实现对其数值的有效预测是一项十分必要而有意义的工作。根据特定管路结构所能允许的均匀极限漏热量,借助于具有一定实验基础的经典流体素流流动关系式,可以预测能够成功实现He II传输的系统压力差。  相似文献   

17.
周期性矩形槽通道入口流动与换热的数值分析   总被引:4,自引:4,他引:0  
对周期性矩形槽流道入口的流动与换热进行了数值模拟。结果表明:在所考虑的参数条件下,流动和换热是非稳态的,并且随着Re的增大,这种随时间变化的特点越明显;当Re等于100、200时,经过1~2个几何周期,各周期的流速分布和无量纲温度的分布基本相同,流动和换热表现为明显的周期性充分发展特征。  相似文献   

18.
层流场协同方程的验证及其性质   总被引:3,自引:0,他引:3  
在粘性耗散一定的条件下,以热量传递势容耗散取得极值为优化目标,利用变分方法可以导出稳态层流对流换热的场协同方程。场协同方程的意义在于能够求解一定边界条件所对应的最佳速度场,从而实现最优的传热效果。本文采用二维方腔内空气的层流对流换热模型,通过将最佳速度场与其它流场的换热结果进行比较,初步验证了场协同方程的正确性,并对场协同方程的优化过程和原理进行了深入的分析。  相似文献   

19.
开孔矩形翅片椭圆管流动与换热特性的数值研究   总被引:7,自引:0,他引:7  
对电站直接空冷系统的基本换热元件矩形翅片椭圆管建立三维物理数学模型,对空气侧流动和传热性能进行数值研究.分析了不同迎面风速下翅片上无扰流孔和开有扰流孔两种情况下矩形翅片表面的局部表面传热系数分布规律,发现椭圆基管后存在的尾流区使得翅片的强化换热作用减弱。比较了扰流孔的尺寸、数目和位置对管外空气侧流动与换热的影响,结果表明:扰流孔尺寸对流动与换热存在明显影响,而扰流孔数目和位置的影响相对比较小.  相似文献   

20.
锯齿型通道流动和换热的周期性研究   总被引:1,自引:0,他引:1  
本文对锯齿型通道内流动与换热的周期性进行了数值模拟.在Re=550~700范围内,入口段后的各几何周期的平均Nu数已随时间发生振荡,且随Re数增大,振荡起始位置朝入口方向移动;发生振荡的各几何周期的流场、无量纲温度场虽然在同一时刻不尽相同,但在不同的时刻可以找到近乎相同的流场和温度场,而且各几何周期平均Ⅳu数其振荡幅度基本相同,对时间求平均值后也基本相同,因此仍具有周期性充分发展的一些特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号