首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
A new mechanism of the intraband carrier relaxation in quantum dots embedded into a heterostructure at a relatively large distance from its doped elements is proposed. The relaxation process is related to the coupling between the electronic subsystem of a quantum dot and surface plasmon-phonon excitations of the doped components of the heterostructure via the electric potential produced by these excitations. It is found that, in layered heterostructures, the dispersion relations of the surface plasmon-LO-phonon modes display critical points giving rise to pronounced singularities in the relaxation rate spectra. The estimates of the relaxation rates for InAs quantum dots embedded into a GaAs heterostructure have shown high efficiency of the proposed mechanism even when the quantum dots are located at a distance of up to 100 nm from the doped regions of the heterostructure. When this distance lies in the range of a few tens of nanometers, this mechanism appears to be predominant. Possible manifestations of the relaxation mechanism under consideration in the photoluminescence spectra of quantum dots are discussed.  相似文献   

2.
3.
徐天宁  李家辉  张磊  吴惠桢 《光学学报》2008,28(8):1565-1570
PbTe/CdTe量子阱是一类新型异系低维结构材料,实验观察到具有强的室温中红外光致发光现象.建立了理论模型,计算了PbTe/CdTe量子阱的自发辐射率和光学增益.模型中量子阱分立能级的计算采用k·p包络波函数方法和有限深势阱近似,考虑了PbTe能带结构的各项异性和阱层中应变对能级的影响.计算了PbTe/CdTe量子阱自发辐射谱与带间弛豫和注入载流子浓度间的依赖关系,计算结果与实验观察到的光致发光峰相符合.自发辐射谱线峰位随着注入载流子浓度的增加而出现蓝移,当载流子浓度从2×1017cm-3增加到2.8×1018cm-3,基态发射峰从372 meV蓝移到397 meV,而第一激发态发射峰蓝移量为15 meV.上述蓝移现象是由载流子与载流子及载流子与声子间的相互作用引起的.与PbTe体材料相比.PbTe/CdTe量子阱结构具有更高的增益强度(提高近15倍)和更宽的增益区,因而该体系可能是实现室温连续工作的中红外激光器的理想材料.  相似文献   

4.
We have developed a theory of a transient intraband light absorption by semiconductor quantum dots. This absorption plays an important role in the two-pulse pump-probe method, which enables determining the energy relaxation rates of electron-hole excited states. We have considered all possible schemes of this process wherein the carrier frequency of optical pump pulses is close to the resonance with the interband transition of the quantum-dot electronic subsystem, while the carrier frequency of probe pulses is resonant to the intraband transition. For ensembles of identical and size-distributed quantum dots, the probe pulse energy absorption induced by the pump pulse is analyzed in relation to the delay time between the pulses. We have found that, under certain conditions, this dependence can be described by a single, two, or three exponentials. The exponents of the exponentials are proportional to the energy relaxation rates of electron-hole excited states.  相似文献   

5.
Kinetics of relaxation of photoluminescence from the interband transition between dimensionalquantization levels of electrons and holes in InGaAs/GaAs quantum wells as a function of their distance to an interface with Au is investigated. It is demonstrated that the photoluminescence relaxation time becomes several times shorter when the distance from the quantum well to the interface decreases to several tens of nanometers. It is established that the photoluminescence relaxation time at a shorter wavelength corresponding to a recombination transition between excited states of electrons and holes in the quantum well is shorter than that at a longer wavelength corresponding to a recombination transition between the ground states. A theoretical model explaining this phenomenon is proposed.  相似文献   

6.
Data on quantum yields and photoluminescence decay times of quantum dots have been collected. Photoprocesses that occur in quantum dots are compared with photoprocesses occurring in complex organic molecules in the condensed phase. The review consists of the introduction, three parts, and conclusions. The first two parts are devoted to quantum dots that are formed by indirect-gap semiconductors. The first part is devoted to data on the photoluminescence quantum yields and decay times of carbon quantum dots, and Table 1 presents selected values and short comments to these data. Table 2 of the same part presents data on fast relaxation processes in the same objects. In the second part, Tables 3 and 4, as well as the following text, contain similar information about silicon quantum dots. Data on photoprocesses in quantum dots formed by direct-gap semiconductors are collected in the third part. Data on the photoluminescence yields, decay times, and relaxation processes are listed in Tables 5 and 6. Particular attention in the present review is given to the effect that a change in the frequency of vibrations in the environment of a quantum dot has on the photoluminescence yields and the rate of relaxation processes between electronic levels in bands, which indicates that the inductive resonance mechanism of nonradiative transitions is applicable to these systems.  相似文献   

7.
We study the variation of the gain and the differential gain for a quantum well laser based on the CdZnTe alloys. We calculate theoretically the optical gain of CdZnTe based quantum well laser, as function of the alloys composition for various values of carrier’s densities. Our study is based on the parabolic model with the intraband relaxation taken into account. Finally, we investigate how the composition alloys affects the differential gain of quantum well lasers.  相似文献   

8.
Intraband optical transitions in semiconductor quantum dots (QDs) in the forms of a parallelepiped, sphere, and cylinder have been considered. It is shown that the size dependence of the matrix elements of electron-photon interaction, which includes the intraband transitions, differs in the E · r and A · p representations of electron-photon coupling, which are widely used to describe various optical processes. The radiative intraband relaxation rates of QD electron excitations have been calculated, depending on the QD size and shape and the parameters of the QD material. It is shown that the radiative intraband transition rate may reach 109 s−1.  相似文献   

9.
The penetration of electric fields induced by surface optical phonons into adjacent layers of semiconductor heterostructures is investigated. The mechanical displacement of ions, the corresponding electric fields, and the dispersion relations for surface phonon modes in single and double heterostructures are calculated within the macroscopic phenomenological model of optical lattice vibrations. To estimate the penetration depth of the surface electric fields, the intraband relaxation rate of the electron subsystem of a quantum dot embedded in a heterostructure, related to these fields, is calculated as a function of the distance from the interface between the media to the quantum dot.  相似文献   

10.
We study light absorption mechanisms in semiconducting carbon nanotubes using low-temperature, single-nanotube photoluminescence excitation spectroscopy. In addition to purely electronic transitions, we observe several strong phonon-assisted bands due to excitation of one or more phonon modes together with the first electronic state. In contrast with a small width of emission lines (sub-meV to a few meV), most of the photoluminescence excitation features have significant linewidths of tens of meV. All of these observations indicate very strong electron-phonon coupling that allows efficient excitation of electronic states via phonon-assisted processes and leads to ultrafast intraband relaxation due to inelastic electron-phonon scattering.  相似文献   

11.
We report the study of infrared spectroscopy of intraband transitions in Ge/Si quantum dot superlattices. The superlattices, which were grown on (001) oriented Si substrates by a solid source molecular beam epitaxy system, are composed mainly of 20 or 30 periods of Ge dot layers and Si spacer films. The structural properties of them and of the uncapped Ge dots grown on the surfaces of some of them were tested by cross-sectional transmission electron and atomic force microscopes, respectively. It is found that the Ge quantum dots have flat lens-like shapes. Infrared absorption signals peaking in the mid-infrared range were observed using Fourier transform infrared and Raman scattering spectroscopy techniques. Experimental and theoretical analysis suggests that the mid-infrared response be attributed to intraband transitions within the valence band of the Ge quantum dots in the superlattices. The fact that the intraband absorption is strongly polarized along the growth axis of the superlattices signifies that the Ge quantum dots with flat lens-like shapes perform as Ge/Si-based quantum wells. This study demonstrates the application potential of these kinds of Ge/Si quantum dot superlattices for developing mid-infrared photodetectors.  相似文献   

12.
13.

The processes of excitation and relaxation of confined excitons in semiconductor quantum dots upon indirect high-energy excitation have been considered. The temperature behavior of photoluminescence of quantum dots in a SiO2 dielectric matrix has been described using a model accounting for the process of population of quantum-dot triplet states upon excitation transfer through mobile excitons of the matrix. Analytical expressions that take into account the two-stage and three-stage schemes of relaxation transitions have been obtained. The applicability of these expressions for analyzing fluorescence properties of semiconductor quantum dots has been demonstrated using the example of silicon and carbon nanoparticles in the thin-film SiO2 matrix. It has been shown that the complex character of the temperature dependences of the photoluminescence upon indirect excitation can be an indication of a multistage relaxation of excited states of the matrix and quantum dots. The model concepts developed in this study allow one to predict the form of temperature dependences of the photoluminescence for different schemes of indirect excitation of quantum dots.

  相似文献   

14.
We perform for the first time photoluminescence excitation (PLE) studies of individual nanocrystals (NCs) that reveal the structure of excited-state transitions not obscured by ensemble averaging. Single-NC PLE spectra strongly deviate from a traditional idealized picture of sharp, quasiatomic resonances. We detect only a few relatively narrow transitions (3-4 meV) at the band edge, while at higher spectral energies, we observe a broad structureless feature separated from the band-edge peaks by a >50 meV "minigap." These observations can be rationalized by analyzing hole intraband relaxation behavior.  相似文献   

15.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

16.
The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field.It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.  相似文献   

17.
Radiative transitions associated with intraband electron tunneling through DC biased quantum well structures are analyzed theoretically. Spontaneous emission and stimulated emission of photons within the quantum well structure are calculated and estimates are made of the radiative transition rate in comparison with the damping loss. The absence of an inherent long wavelength emission cutoff is in contrast with interband transition devices and suggests applications of intraband transition devices as far infrared or microwave sources.  相似文献   

18.
Growth, photoluminescence characterisation and time-resolved optical measurements of electron spin dynamics in (1 1 0)-oriented GaAs/AlGaAs quantum wells are described. Conditions are given for MBE growth of good-quality quantum wells, judged by the width of low-temperature excitonic photoluminescence. At 170 K the electron spin relaxation rate in (1 1 0)-oriented wells shows a 100-fold reduction compared to equivalent (1 0 0)-oriented wells and also a 10-fold increase with applied electric field from 20 to 80 kV cm−1. There is evidence for similar dramatic effects at 300 K. Spin relaxation is field independent below 20 kV cm−1 reflecting quantum well asymmetry. The results indicate the achievability of voltage-gateable quantum well spin memory time longer than 10 ns at room temperature simultaneously with high electron mobility.  相似文献   

19.
We present the quantum theory of momentum and spin relaxation of exciton-polaritons in microcavities. We show that giant longitudinal-transverse splitting of the polaritons mixes their spin states, which results in beats between right- and left-circularly polarized photoluminescence of microcavities, as was recently experimentally observed [Phys. Rev. Lett. 89, 077402 (2002)]]. This effect is strongly sensitive to the bosonic stimulation of polariton scattering.  相似文献   

20.
The experimental results of a photoluminescence kinetics study of InAs/GaAs structures with quantum dots grown by metal-organic vapor-phase epitaxy are shown. The measurements have revealed the fast capture of excited carriers from the GaAs barrier to quantum dots and slow interlevel relaxation inside the quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号