首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.  相似文献   

2.
We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.  相似文献   

3.
基于哺乳动物生理振子模型,构造了相应的介观随机模型,研究了该系统中内噪声对基因振荡的影响.结果发现通过内噪声随机共振的机制,随机的基因振荡可以在最佳内噪声水平处达到最佳状态.同时,还发现存在一个中间的系统尺度使得随机模型表现出比确定性模型更宽的有效振荡区域,这说明了内噪声增强了体系的鲁帮性.讨论了这些效应可能的生理意义.  相似文献   

4.
Self-induced stochastic resonance in excitable systems   总被引:4,自引:0,他引:4  
The effect of small-amplitude noise on excitable systems with strong time-scale separation is analyzed. It is found that vanishingly small random perturbations of the fast excitatory variable may result in the onset of a deterministic limit cycle behavior, absent without noise. The mechanism, termed self-induced stochastic resonance, combines a stochastic resonance-type phenomenon with an intrinsic mechanism of reset, and no periodic drive of the system is required. Self-induced stochastic resonance is different from other types of noise-induced coherent behaviors in that it arises away from bifurcation thresholds, in a parameter regime where the zero-noise (deterministic) dynamics does not display a limit cycle nor even its precursor. The period of the limit cycle created by the noise has a non-trivial dependence on the noise amplitude and the time-scale ratio between fast excitatory variables and slow recovery variables. It is argued that self-induced stochastic resonance may offer one possible scenario of how noise can robustly control the function of biological systems.  相似文献   

5.
We study the emergence of oscillatory self-sustained behavior in a nonequilibrium Nambu system that features an exchange between different kinetical and potential energy forms. To this end, we study the Yamaleev oscillator in a canonical-dissipative framework. The bifurcation diagram of the nonequilibrium Yamaleev oscillator is derived and different bifurcation routes that are leading to limit cycle dynamics and involve pitchfork and Hopf bifurcations are discussed. Finally, an analytical expression for the probability density of the stochastic nonequilibrium oscillator is derived and it is shown that the shape of the density function is consistent with the oscillator properties in the deterministic case.  相似文献   

6.
In the paper the characteristic properties of the chaotic oscillation excitation in millimeter Backward-Wave Oscillators are investigated. To enhance the interaction efficiency and provide the strong nonlinear working regimes of the oscillator the weak-resonant oscillatory system with large electrical length is proposed to use. It is shown, that in this case the oscillation automodulation with complicated power spectrum are developed for the smaller values of the working current to starting current ratio in comparison with BWO having matched oscillatory system. This allows to oscillate with high efficiency the continuous millimeter chaotic (noise) signals which have a wide enough power spectrum and integral power of about several watts.  相似文献   

7.
易鸣  贾亚  刘泉  詹璇 《中国物理 B》2008,17(1):621-627
研究了果蝇细胞内生物钟基因调节网络的分子噪声,特别讨论了生物钟系统处于略微远离振荡区域的稳态时分子噪声对于时钟蛋白的日夜节律振荡的影响.结果表明:(1)虽然时钟蛋白合成或者衰减的生化反应事件是在随机的时间间隔里随机发生的,但系统可以依赖自身固有的调节机理诱导出明显的日夜节律振荡;(2)分子噪声诱导的日夜节律振荡的相干性可以在合适的分子噪声水平下到达最佳,说明了相干共振现象的发生.  相似文献   

8.
易鸣  贾亚  刘泉  詹璇 《物理学报》2008,57(1):621-627
研究了果蝇细胞内生物钟基因调节网络的分子噪声,特别讨论了生物钟系统处于略微远离振荡区域的稳态时分子噪声对于时钟蛋白的日夜节律振荡的影响.结果表明:(1)虽然时钟蛋白合成或者衰减的生化反应事件是在随机的时间间隔里随机发生的,但系统可以依赖自身固有的调节机理诱导出明显的日夜节律振荡;(2)分子噪声诱导的日夜节律振荡的相干性可以在合适的分子噪声水平下到达最佳,说明了相干共振现象的发生. 关键词: 生物钟 分子噪声 日夜节律振荡 相干共振  相似文献   

9.
We demonstrate coherence resonance in a dynamical system without external noise. The experimental evidence is reported in the low frequency fluctuations of a chaotic diode laser with optical feedback. The phenomenon is also verified numerically using the Lang-Kobayashi equations for a single solitary mode laser, without noise terms. Fast deterministic dynamics plays the role of an effective exciting noise, narrowing the resonance in the autonomous slow power drop cycles of the laser. This new result is the natural extension of deterministic stochastic resonance and noise induced coherence resonance predicted and observed in recent years.  相似文献   

10.
A detailed asymptotic study of the effect of small Gaussian white noise on a relaxation oscillator undergoing a supercritical Hopf bifurcation is presented. The analysis reveals an intricate stochastic bifurcation leading to several kinds of noise-driven mixed-mode oscillations at different levels of amplitude of the noise. In the limit of strong time-scale separation, five different scaling regimes for the noise amplitude are identified. As the noise amplitude is decreased, the dynamics of the system goes from the limit cycle due to self-induced stochastic resonance to the coherence resonance limit cycle, then to bursting relaxation oscillations, followed by rare clusters of several relaxation cycles (spikes), and finally to small-amplitude oscillations (or stable fixed point) with sporadic single spikes. These scenarios are corroborated by numerical simulations.  相似文献   

11.
12.
Two different approaches are proposed to obtain explicit solutions for stochastic relaxation oscillator problems in the weak noise limit. The first method generalizes the idea of the cumulant expansion. It does not presuppose an analytical treatment of the deterministic motion. It is however restricted to the discussion of stationary situations. In the second method an adiabatic elimination of irrelevant variables allows for the computation of time dependent solutions. It can be carried through only if the deterministic limit cycle is known analytically. As special examples the stationary solutions of the stochastic van der Pol oscillator and time dependent solutions of a simple one dimensional model system have been obtained.This article is an excerpt from a dissertation presented at TH Darmstadt, Darmstädter Dissertation D17This work was performed within a program of the Sonderforschungsbereich 185 Darmstadt-Frankfurt, FRG  相似文献   

13.
It is controversial whether temporal spike coding or rate coding is dominant in the information processing of the brain. We show by a two-layered neural network model with noise that, when noise is small, cortical neurons fire synchronously and intervals of synchronous firing robustly encode the signal information, but that the neurons desynchronize with moderately strong noise to encode waveforms of the signal more accurately. Further increase of noise just deteriorates the encoding. A positive role of noise in the brain is suggested in a meaning different from stochastic resonance, coherence resonance, and deterministic chaos.  相似文献   

14.
The phenomenon of frequency and phase synchronization in stochastic systems requires a revision of concepts originally phrased in the context of purely deterministic systems. Various definitions of an instantaneous phase are presented and compared with each other with special attention paid to their robustness with respect to noise. We review the results of an analytic approach describing noise-induced phase synchronization in a thermal two-state system. In this context exact expressions for the mean frequency and the phase diffusivity are obtained that together determine the average length of locking episodes. A recently proposed method to quantify frequency synchronization in noisy potential systems is presented and exemplified by applying it to the periodically driven noisy harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by Rice the related phase velocity is termed the Rice frequency. Finally, we discuss the relation between the phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the developed concepts to the periodically driven bistable Kramers oscillator.  相似文献   

15.
We study the dynamics of a lattice of coupled nonidentical Fitz Hugh-Nagumo system subject to independent external noise. It is shown that these stochastic oscillators can lead to global synchronization behavior without an external signal. With the increase of the noise intensity, the system exhibits coherence resonance behavior. Coupling can enhance greatly the noise-induced coherence in the system.  相似文献   

16.
The concept of the degree of cross-polarization is extended from stochastic electromagnetic stationary beams to stochastic electromagnetic pulsed beams, and the propagation properties of the degree of cross-polarization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams is studied. The influence of pulse duration and temporal coherence length on the degree of cross-polarization P is emphasized. It is shown that P exhibits an oscillatory behavior in free-space propagation. An increase in the pulse duration or a decrease in the temporal coherence length can weaken the oscillation of P. The validity of the results is interpreted physically.  相似文献   

17.
毕远宏  杨卓琴  何小燕 《物理学报》2016,65(2):28701-028701
肿瘤抑制蛋白p53的动力学在一定程度上可以决定DNA损伤后的细胞命运.p53的动力学行为与p53信号通路中p53-Mdm2振子模块密切相关.然而,p53的负调控子Mdm2的生成速率的增加使其在一些癌细胞中过表达.因此探讨Mdm2生成速率对p53动力学的影响有重要意义.同时,PDCD5作为p53的激活子也调控p53的表达.因此,本文针对PDCD5调控的p53-Mdm2振子模型,通过分岔分析获得了Mdm2生成速率所调控的p53的单稳态、振荡以及单稳态与振荡共存的动力学行为,且稳定性通过能量面进行了分析.此外,噪声强度对p53动力学的稳定性有重要的影响.因此,针对p53的振荡行为,探讨了噪声强度对势垒高度和周期的影响.本文所获得的结果对理解DNA损伤后的p53信号通路调控起到一定的指导作用.  相似文献   

18.
《Physics letters. A》2006,359(6):640-646
We consider the dynamical behavior of threshold systems driven by external periodic and stochastic signals and internal delayed feedback. Specifically, the effect of positive delayed feedback on the sensitivity of a threshold crossing detector (TCD) to periodic forcing embedded in noise is investigated. The system has an intrinsic ability to oscillate in the presence of positive feedback. We first show conditions under which such reverberatory behavior is enhanced by noise, which is a form of coherence resonance (CR) for this system. Further, for input signals that are subthreshold in the absence of feedback, the open-loop stochastic resonance (SR) characteristic can be sharply enhanced by positive delayed feedback. This enhancement is shown to depend on the stimulus period, and is maximal when this period is matched to an integer multiple of the delay. Reverberatory oscillations, which are particularly prominent after the offset of periodic forcing, are shown to be eliminated by a summing network of such TCDs with local delayed feedback. Theoretical analysis of the crossing rate dynamics qualitatively accounts for the existence of CR and the resonant behavior of the SR effect as a function of delay and forcing frequency.  相似文献   

19.
Liang-An Huo 《中国物理 B》2021,30(8):80201-080201
With the development of information technology, rumors propagate faster and more widely than in the past. In this paper, a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise is proposed. The global positivity of the solution process is proved, and further the basic reproductive number R0 is obtained. When R0 < 1, the dynamical process of system with Lévy jump tends to the rumor-free equilibrium point of the deterministic system, and the rumor tends to extinction; when R0 > 1, the rumor will keep spreading and the system will oscillate randomly near the rumor equilibrium point of the deterministic system. The results show that the oscillation amplitude is related to the disturbance of the system. In addition, increasing media coverage can effectively reduce the final spread of rumors. Finally, the above results are verified by numerical simulation.  相似文献   

20.
We study the effect of recycled noise, generated by the superposition of a primary Gaussian noise source with a second component of constant delay, in a parameter region below the threshold of supercritical Hopf bifurcation, by focussing on the performance of noise induced oscillations and coherence resonance. For fixed noise intensity, the amplitude and signal-to-noise ratio of the oscillation show periodic dependences on the delay time. The optimal noise intensity for the occurrence of coherence resonance also shows a periodic dependence on the delay. A theoretical analysis based on the stochastic normal form theory is presented, which qualitatively reproduces the simulation results with good agreement. This work presents a possible strategy for controlling noise induced oscillations and coherence resonance by deliberately adjusting the parameters of the recycled noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号