首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 229 毫秒
1.
提出将小波包辅助下子带分解的独立成分分析用于高光谱混合像元盲分解.利用小波包分解改进独立成分分析技术,并考虑到高光谱数据的特点提出了高光谱混合像元盲分解方法,该方法能克服独立成分分析方法要求端元光谱统计独立带来的问题.利用两组合成数据和三组室内实测数据对本算法进行测试,证明了本算法能较为准确的提取端元光谱波形和端元丰度,其准确度明显优于独立成分分析方法.该方法为高光谱遥感影像的盲分解提供了一条新的途径.  相似文献   

2.
由于受到高光谱遥感图像传感器平台的限制,图像的空间分辨率受到一定影响,这导致高光谱遥感图像的像元通常是多种地物的混合, 也叫做混合像元。混合像元的存在制约了高光谱遥感图像的准确分析和应用领域。采用高光谱解混技术可将混合像元分解为纯净的物质光谱(Endmember, 端元)和每种物质光谱所对应的混合比例(Abundance, 丰度),为获取更多更精细的光谱提供了可能。这对高精度的地物分类识别、目标检测和定量遥感分析等研究领域具有重要的意义。因此,解混技术成为高光谱遥感图像领域的一个研究热点。基于线性光谱混合模型(linear spectral mixing model, LMM),提出了一种端元丰度联合稀疏约束的图正则化非负矩阵分解(endmember and abundance sparse constrained graph regularized nonnegative matrix factorization, EAGLNMF)算法。该算法通过研究基于非负矩阵分解(nonnegative matrix factorization, NMF)的方法,结合图正则化理论来考虑高光谱数据内部的几何结构,将端元光谱稀疏约束和丰度稀疏约束应用于其中,从而能够对高光谱数据的内部流形结构进行更为有效的表达。首先,构造了EAGLNMF算法的损失函数,采用VCA-FCLS方法进行初始化,然后,设定相关参数,包括图正则化权重矩阵参数、端元光谱稀疏约束因子和丰度矩阵稀疏约束因子,最后,通过推导得到了端元矩阵与丰度矩阵的迭代公式,并且设置了迭代停止条件。该方法不受图像中是否有纯像元的限制。实际上,在现行高光谱遥感传感器平台情况下,高光谱遥感图像中几乎不存在纯像元,因此,EAGLNMF方法为高光谱遥感图像的实际应用提供了一种思路。采用合成的高光谱数据,构造了4个实验来分析该方法的可行性和有效性,实验将该算法与VCA-FCLS,标准NMF及GLNMF等经典的解混算法进行比较,通过光谱角距离(spectral angle distance, SAD)和丰度角距离(abundance angle distance, AAD)这两个度量标准来进行比较。实验1是总体分析实验。在固定的信噪比和固定端元数目的情况下,用以上三种经典方法与EAGLNMF同时进行解混。实验2是SNR影响分析实验。在固定端元数目和不同信噪比的情况下,用这四种方法进行解混。实验3端元数目分析实验。在固定信噪比和不同端元数目的情况下,用四种方法进行解混,并且将结果进行对比。实验结果发现提出的EAGLNMF方法在提取端元精度和估计丰度精度上都更为准确。同时,实验4是稀疏因子分析实验。对端元稀疏约束和丰度稀疏约束之间的影响因子进行分析,实验结果表明引入的端元稀疏约束对于解混结果也具有较好的影响,并且端元稀疏约束和丰度稀疏约束之间的影响因子也对解混结果具有一定影响。最后,将该算法应用于AVIRIS所采集的真实高光谱图像数据,将其解混结果与美国地质勘探局光谱库中光谱进行匹配对比,其提取的平均端元精度相比于其他三种方法要稍好。  相似文献   

3.
小波包分解支持下的高光谱混合像元盲分解   总被引:2,自引:1,他引:1  
提出将小波包辅助下子带分解的独立成分分析用于高光谱混合像元盲分解.利用小波包分解改进独立成分分析技术,并考虑到高光谱数据的特点提出了高光谱混合像元盲分解方法,该方法能克服独立成分分析方法要求端元光谱统计独立带来的问题.利用两组合成数据和三组室内实测数据对本算法进行测试,证明了本算法能较为准确的提取端元光谱波形和端元丰度...  相似文献   

4.
溢油覆盖度的估测是海洋溢油探测与灾害评估的重要内容,受航空航天传感器地面分辨率的限制,准确探测溢油覆盖度比较困难。在海洋风浪及破碎波作用下,溢油往往呈条带状分布。获取的高光谱数据中存在大量的油、水混合像元;传统图像分割方式计算溢油面积存在偏差,且受传感器角度、高度等影响,光谱变异明显,传统端元提取方法很难找到纯像元光谱。提出了一种通过分区混合端元计算海洋溢油覆盖度的探测方法。首先对影像进行分区并使用N-FINDR算法进行端元预选;然后再利用独立分量分析(ICA)方法进行端元精选,按照负熵最大输出得到候选端元,并将地面同步参考光谱作为约束引入相似性溢油端元识别;最后基于非负矩阵分解方法(NMF)求取端元丰度,通过太阳耀斑区的修正,得到真实的溢油覆盖度。分区混合端元的提取较好的解决了全局端元变异及环境适应性差的问题,使精选后的端元具有更好的环境鲁棒性。为更好地衡量该算法精度,采用仿真数据与真实高光谱影像数据相结合进行实验验证。仿真实验中,人工设定溢油丰度,使用均方根误差(RMSE)和丰度估计误差对比评估估计丰度与设定丰度之间的差别,并设计了算法适应性和抗噪实验。结果表明采用MNF和ICA两种高光谱压缩方法,丰度估计误差均低于3%,重构图像的最小均方根误差RMSE最高为0.030 6,且具有较好的抗噪能力,验证了该算法的有效性。真实实验中,使用2011年山东长岛溢油8景机载高光谱影像数据为真实测试数据,由于真实遥感数据往往缺失地面同步丰度数据,导致对算法精度进行评价比较困难,使用仿真数据交互验证与目视解译数据相结合的方法进行精度评价,通过耀斑区修正后估测的机载高光谱成像总的溢油覆盖面积为1.17 km2,溢油覆盖度为22.85%,与现场人工估测面积偏差为2.15%,明显高于传统方法。受海洋破碎波、光谱变异性影响,和航空航天遥感器地面分辨率的限制,海洋溢油遥感中单个像元进行丰度解析是一个难题。基于亚像元丰度分解思想,讨论了海洋溢油覆盖度的问题,提出一种较为完善的海洋溢油覆盖度的计算办法,通过仿真数据和实际的高光谱溢油数据进行了方法的验证,实现了较为客观的自动化溢油覆盖度(丰度)探测方法,可以较为准确的估测海洋溢油的覆盖度,对溢油遥感面积的业务化探测具有积极意义。  相似文献   

5.
王瀛  梁楠  郭雷 《光子学报》2014,(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能.本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cuprite地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

6.
王瀛  梁楠  郭雷 《光子学报》2012,41(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能,本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cupritc地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

7.
光谱最小信息熵的高光谱影像端元提取算法   总被引:3,自引:0,他引:3  
端元提取是混合像元分解的关键,研究其算法在高精度的地物识别、丰度反演和定量遥感等方面具有重要意义。通过研究高光谱遥感影像光谱特征,结合信息熵理论,应用高斯分布函数,建立了一种新的高光谱影像端元提取算法,即光谱最小信息熵(spectral minimum shannon entropy,SMSE)算法。将该算法应用于AVRIRS高光谱影像的端元光谱提取,并经过与美国地质勘探局(United States Geological Survey,USGS)波谱库中的数据匹配,得知其提取端元的精度较高。同时,通过与经典的纯净像元指数(pixel purity index,PPI)和连续最大角凸锥(sequential maximum angle convex cone,SMACC)等端元提取算法进行实验比较和结果综合分析,发现光谱最小信息熵算法提取端元光谱效率更高、精度更好。此外,分别利用SMACC和SMSE提取Hyperion高光谱影像端元,得出SMSE的端元提取效果好于SMACC,从而可认为SMSE算法具有一定普适性。  相似文献   

8.
Zhu CM  Luo JC  Shen ZF  Li JL  Hu XD 《光谱学与光谱分析》2011,31(10):2814-2818
针对现行的凸锥体分析方法提取多光谱影像端元数目的有限性,提出了基于空间全局聚类分析的多光谱遥感影像端元自适应提取方法。该方法首先通过主成分分析对多光谱遥感影像进行降维处理,去除波段间的相关性;然后根据空间光谱间相似性,采用经典的空间聚类算法ISODATA对影像全局聚类,合并聚类后小斑块,实现影像自动分块;最后根据分块对象地物类型分布的复杂程度和散点图特征分析,自适应确定端元数目,再通过沙漏算法迅速地提取端元。通过TM影像端元提取实验表明该方法能够有效的提取多光谱影像的端元;同时克服了端元数目限制,提高了端元提取的精度,为多光谱遥感影像端元提取提供了新思路。  相似文献   

9.
基于实测端元光谱的多光谱图像光谱模拟研究   总被引:2,自引:0,他引:2  
地物光谱特性是遥感应用的基础。然而,在基于野外实测端元光谱的遥感应用中,由于测量尺度不同,导致同一地物光谱形态和反射率值存在很大差异,为遥感信息的定量反演带来困难。文章以新疆塔里木盆地北缘渭干河-库车河绿洲为研究区,选取裸土、植被两类地物作为研究对象,首先通过AVNIR-2传感器的光谱响应函数,实现了将野外实测端元光谱拟合为多光谱离散光谱,通过实例数据表明,拟和的多光谱与AVNIR-2像元光谱具有很好的相关性,在此基础上,采用线性算法建立端元光谱与遥感图像像元光谱的转换模型,实现了从实测端元光谱尺度向遥感多光谱像元尺度的定量光谱转换,为遥感定量分析奠定了一定基础。  相似文献   

10.
基于FastICA的高光谱图像目标分割   总被引:2,自引:2,他引:0  
针对高光谱图像目标识别与分类的应用背景,提出了一种基于快速独立成分分析的高光谱图像目标分割算法.通过引入虚拟维数对图像中的目标端元数量进行估计,利用基于非监督正交子空间投影的异常端元提取算法自动获取目标端元光谱,并将其作为快速独立成分分析的初始混合矩阵.采用最小噪声分量变换对原始数据进行降维,利用快速独立成分分析从降维后的主成分中依次提取出图像中的独立分量.最后,对各独立分量进行恒虚警率检测与形态学滤波,从而得到最终的目标分割结果.对AVIRIS型高光谱图像的实验结果表明,该方法可有效探测出图像中的目标,并可获得较好的分割结果.  相似文献   

11.
水稻分蘖期无人机高光谱影像混合像元特征分析与分解   总被引:1,自引:0,他引:1  
开展水稻无人机高光谱解混,获取水稻植株的高光谱反射率信息,对于提高水稻理化参量的反演模型精度具有重要意义。目前大多基于高光谱遥感影像自身数据进行解混,运用算法模型进行高光谱数据解混,将高光谱图像和可见光图像进行优势互补,提出一种基于无人机高清影像与高光谱遥感影像融合的稻田无人机高光谱解混方法,解决单一数据局限性问题,增强光谱数据对地物的描述能力。为了更好的计算端元丰度,将同一目标区的高清数码正射影像与无人机高光谱遥感影像利用经纬度信息进行空间配准,使得不同传感器获得的图片在几何位置上对齐,通过SVM分类器的监督分类方法对可见光的数码正射影像进行地物分类,利用地物分类的结果对应高光谱的一个像元,从而得到一个像元内的端元丰度。设相邻区域内的水体端元是相同的,利用线性解混模型(LSMM)对相邻区域的混合像元进行解混,最终获取水稻高光谱反射率信息。结果表明对两种图片进行空间配准丰富了数据源信息,有利于像元的端元丰度计算,其中水稻端元丰度在70%以上解混效果最好,丰度在50%以上解混效果一般,丰度在30%以下解混效果较差;选择监督分类方法进行地物分类,精度达到99.5%,面向对象方法分类精度为98.2%,监督分类方法优于面向对象分类方法;最终得到的混合像元分解反射率高于原混合像元反射率,减少了水体混合部分对光谱数据的影响,使得分解后水稻的光谱反射率更加准确,为水稻理化参量无人机成像高光谱遥感反演提供更加准确的科学依据。  相似文献   

12.
积雪混合像元分解方法研究及积雪比例产品的发展是积雪遥感的重要研究方向。在我国北疆地区利用SVC HR-1024野外便携式光谱仪观测了已知积雪比例的混合像元光谱特征并进行系统分析,同时,采用四种混合像元分解模型对实测光谱进行解混及精度评价。结果表明反射率随积雪比例均匀下降并不呈均匀的线性变化,在不同波段呈非线性变化特征,积雪像元解混精度与观测尺度的不同有一定的联系,尺度越小,解混精度越低;进一步对实测光谱的解混结果表明,线性回归法精度较低,特别是对于积雪比例小于50%的解混结果不准确,稀疏回归解混法和非负矩阵解混法略高于线性混合像元分解法,但线性混合像元分解法运算效率最高,稀疏回归解混法运算效率最低,当对遥感图像进行解混时,要综合考虑四种方法的计算效率。通过将推动积雪混合像元分解定量遥感研究,并为遥感影像准确提取积雪比例提供理论依据。  相似文献   

13.
比值导数法矿物组分光谱解混模型研究   总被引:4,自引:0,他引:4  
矿物丰度含量的精确分析是高光谱遥感技术定量分析中的难点。将化学领域的比值导数光谱算法进行总结,将其引入遥感反射率光谱分析,提出了基于线性光谱混合模型的比值导数光谱解混模型,并利用石膏和绿帘石粉末混合物进行了模型的精度分析。实验结果表明,矿物粉末混合物在不同波段其光谱混合特性有所不同,其中部分波段有较强的线性混合特征。采用部分强线性混合波段进行光谱解混,可以取得比全波段解混算法更好的结果。比值导数法光谱解混模型简洁,可以得到高精度的矿物成分反演结果,对于固定端元组成的混合光谱定量分析有较大潜力。  相似文献   

14.
基于光谱分类的端元提取算法研究   总被引:4,自引:0,他引:4  
目前成熟的端元提取算法是基于单形体几何学的像元纯度指数(PPO)算法,N-FINDR,VCA等算法.这些算法从图像所有像元中提取纯光谱,具有提取速度慢、精度不高的缺点;部分算法需要进行光谱降维,不利于小目标信息的提取.该文提出先利用基于空间特征的光谱分类算法进行分类,将格个图像划分成空间相邻、光谱相似的若干类,每一类的...  相似文献   

15.
翁旭辉  雷武虎  任晓东 《应用光学》2019,40(6):1059-1066
针对高光谱图像像元中端元物质非线性混合的特点,借鉴生物群智能现象,提出一种基于双鸟群优化的高光谱图像非线性解混算法。为进一步提高非线性解混算法的精度,通过模拟鸟群中觅食、警惕以及飞行等行为得到非线性问题的最优解。算法通过双鸟群的迭代优化来交替更新目标函数中的最优解以及非线性模型参数,最终得到高光谱图像端元丰度的最佳估计。仿真实验和光谱数据实验结果表明:双鸟群优化算法迭代收敛,能克服局部最小值问题;相比于同类算法,该算法解混结果的丰度重建误差、平均光谱角距离和像元重建误差3项指标均较小,该算法解混精度高,像元重构效果好,能有效提高高光谱图像非线性解混的精度。  相似文献   

16.
水体高光谱中的混合效应问题是水体定量遥感中的难点。已有研究表明,仅依赖标量光谱信息难以解决复杂的水体混合光谱问题。广域水体污染物除光谱信息之外,还具有明显的空间分布特性。充分利用其空间维信息,可以作为遥感光谱维信息的有益补充,有利于水体复杂光谱的解混。以巢湖为例,HJ-1A HSI高光谱数据为数据源,辅以水面光谱测量数据,在空间地统计学和遗传算法理论基础上,利用地统计学中的变异函数模拟相邻空间两像元的分布差异,将邻域像元空间变异函数作为遗传算法目标函数的约束条件,建立基于协同克里格遗传算法的湖泊水体高光谱反演混合光谱空间信息分解模型,并对悬浮物浓度反演结果进行检验。结果显示,与常规混合光谱分解模型相比,混合光谱空间信息分解模型对悬浮物浓度的预测值与实测值相关系数为0.82,均方根误差9.25 mg·L-1,相关系数提高了8.9%,均方根误差下降了2.78 mg·L-1,表明该模型对悬浮物浓度具有较强的预测能力。该方法将水体的空间信息与光谱信息有效结合,可以避免水色参数光谱信号弱导致反演结果失真,同时由于高光谱波段多、信息量大,带来信息提取计算量大而复杂等问题,也为复杂水体混合光谱模型的求解和模型反演精度的提高提供了有效途径。  相似文献   

17.
基于ICA与SVM算法的高光谱遥感影像分类   总被引:5,自引:0,他引:5  
提出了一种利用独立分量分析(ICA)与支撑向量机(SVM)算法进行高光谱遥感影像分类的新方法。采用ICA算法对高光谱遥感影像(PHI传感器获取,80波段)进行了特征提取,并以提取出的影像数据(光谱维数为20)构建SVM分类器。对SVM算法进行核函数删选与参数寻优后,发现采用RBF核的SVM算法(C=103,γ=0.05)分类结果最佳,分类精度与Kappa系数分别达94.5127%与0.935 1,优于BP-神经网络(分类精度39.4758%,Kappa系数0.315 5)、波谱角分类(分类精度80.282 6,Kappa系数0.770 9)、最小距离分类(分类精度85.462 7%,Kappa系数0.827 7)以及最大似然分类(分类精度86.015 6%,Kappa系数0.835 1)4种方法。针对分类结果常出现的"椒盐"现象,利用形态学算子对SVM(RBF核)分类结果进行了类别集群处理,将分类精度与Kappa系数分别提高至94.758 4%与0.938 0,获得了更接近实况的分类图像。结果表明:ICA结合SVM算法准确率高,是高光谱遥感影像分类的优选方法,且类别集群是优化影像分类的有效方法之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号