首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
《光子学报》2021,50(7)
为了得到改进的优化解,提出一种基于丰度和端元约束下非负矩阵分解的解混方法。首先,基于丰度矩阵稀疏性特点,将重加权稀疏正则化引入到非负矩阵分解模型中,其中权重根据丰度矩阵自适应更新。其次,根据同一地物在相邻像素中分布的相似性先验,进一步将全变差正则化引入到非负矩阵分解模型中,以改进其丰度平滑性。最后,通过一个马尔可夫随机场模型中的势函数,实现端元光谱平滑性的约束。为了验证所提算法的性能,在一个模拟数据集和两个真实数据集(Jasper Ridge和Cuprite)进行了测试。结果表明:所提方法在端元光谱相似性和丰度估计精度等方面都有所改进。  相似文献   

2.
水稻分蘖期无人机高光谱影像混合像元特征分析与分解   总被引:1,自引:0,他引:1  
开展水稻无人机高光谱解混,获取水稻植株的高光谱反射率信息,对于提高水稻理化参量的反演模型精度具有重要意义。目前大多基于高光谱遥感影像自身数据进行解混,运用算法模型进行高光谱数据解混,将高光谱图像和可见光图像进行优势互补,提出一种基于无人机高清影像与高光谱遥感影像融合的稻田无人机高光谱解混方法,解决单一数据局限性问题,增强光谱数据对地物的描述能力。为了更好的计算端元丰度,将同一目标区的高清数码正射影像与无人机高光谱遥感影像利用经纬度信息进行空间配准,使得不同传感器获得的图片在几何位置上对齐,通过SVM分类器的监督分类方法对可见光的数码正射影像进行地物分类,利用地物分类的结果对应高光谱的一个像元,从而得到一个像元内的端元丰度。设相邻区域内的水体端元是相同的,利用线性解混模型(LSMM)对相邻区域的混合像元进行解混,最终获取水稻高光谱反射率信息。结果表明对两种图片进行空间配准丰富了数据源信息,有利于像元的端元丰度计算,其中水稻端元丰度在70%以上解混效果最好,丰度在50%以上解混效果一般,丰度在30%以下解混效果较差;选择监督分类方法进行地物分类,精度达到99.5%,面向对象方法分类精度为98.2%,监督分类方法优于面向对象分类方法;最终得到的混合像元分解反射率高于原混合像元反射率,减少了水体混合部分对光谱数据的影响,使得分解后水稻的光谱反射率更加准确,为水稻理化参量无人机成像高光谱遥感反演提供更加准确的科学依据。  相似文献   

3.
积雪混合像元分解方法研究及积雪比例产品的发展是积雪遥感的重要研究方向。在我国北疆地区利用SVC HR-1024野外便携式光谱仪观测了已知积雪比例的混合像元光谱特征并进行系统分析,同时,采用四种混合像元分解模型对实测光谱进行解混及精度评价。结果表明反射率随积雪比例均匀下降并不呈均匀的线性变化,在不同波段呈非线性变化特征,积雪像元解混精度与观测尺度的不同有一定的联系,尺度越小,解混精度越低;进一步对实测光谱的解混结果表明,线性回归法精度较低,特别是对于积雪比例小于50%的解混结果不准确,稀疏回归解混法和非负矩阵解混法略高于线性混合像元分解法,但线性混合像元分解法运算效率最高,稀疏回归解混法运算效率最低,当对遥感图像进行解混时,要综合考虑四种方法的计算效率。通过将推动积雪混合像元分解定量遥感研究,并为遥感影像准确提取积雪比例提供理论依据。  相似文献   

4.
高分系列卫星的发射和无人机高光谱技术的发展,高光谱可用数据进一步扩展。为了提升高光谱数据的精细利用价值,高光谱影像混合像元解混成为当前至关重要的任务。随着人工智能技术的快速发展,深度学习理论被引入遥感图像处理领域。自编码网络具有较强的特征提取能力,已经开始应用于高光谱影像解混方面。以自编码网络为基础对其结构进行改进,提出一种深度堆栈自编码网络(DSAE)用于高光谱图像解混研究。该网络包含两个部分:端元识别网络(EDSAE)和丰度求解的网络(ADSAE)。首先,通过添加批标准化处理、稀疏约束、“和为一”约束以及删除网络偏置项构建EDSAE网络,开展非监督训练进行高光谱影像端元识别。其次,将获取的端元光谱数据依据HAPKE非线性混合模型和LINEAR线性混合模型开展数据增强,生成多元混合的带有丰度标签的模拟高光谱数据集。最后,在堆栈自编码网络基础上,设置最后一层自编码器的激活函数为Softmax函数,构建监督训练网络ADSAE,把模拟数据集作为训练数据,高光谱影像作为测试数据,求取真实高光谱影像的丰度矩阵。对Samson、 Jasper Ridge和Urban公共的高光谱影像开展端元识别和...  相似文献   

5.
基于高光谱图像混合像元分解技术的去雾方法   总被引:2,自引:0,他引:2  
针对薄雾天气造成的能见度低的问题,提出了一种利用高光谱图像混合像元分解技术去除雾的方法。建立了薄雾天气下的传感器成像物理模型,对含有雾端元的线性光谱混合数学模型进行解混。然后通过丰度反演方法得到雾端元的丰度后加以去除,将剩余地物端元的丰度调整后即获得去雾后的图像。该方法相比于基于单波段或全色图像的去云雾方法,物理意义更明确。从客观评价指标上也可以看出该方法的薄雾去除效果佳,去雾后图像细节更加丰富。  相似文献   

6.
基于有效端元集的双线性解混模型   总被引:2,自引:0,他引:2  
光谱解混是用于定量分析高光谱图像中成分含量的一项重要技术方法,主要包括线性解混模型和非线性解混模型。线性解混模型构造简单,但并未考虑不同成分光子间的相互影响,导致解混结果在很多实际图像上不够精确。常用的非线性混合模型中的双线性解混算法,随着图像中端元数量增加,虚拟端元的数量也随之快速增加,计算精度受到很大的影响。论文报道改进了双线性解混的模型,并提出一种有效端元子集的选择算法。首先结合欧氏距离和光谱夹角,按照与混合像元的距离,将所有端元排序;然后利用排序结果和误差变化情况选择实际参与混合的端元子集。从而降低了未参与特定混合像元混合的端元对解混结果的影响,提高了解混精度。对模拟图像的测试效果证明了该算法可以减小光谱的重构误差,对实际航拍高光谱溢油图像的分析结果也进一步说明了算法的有效性。  相似文献   

7.
溢油覆盖度的估测是海洋溢油探测与灾害评估的重要内容,受航空航天传感器地面分辨率的限制,准确探测溢油覆盖度比较困难。在海洋风浪及破碎波作用下,溢油往往呈条带状分布。获取的高光谱数据中存在大量的油、水混合像元;传统图像分割方式计算溢油面积存在偏差,且受传感器角度、高度等影响,光谱变异明显,传统端元提取方法很难找到纯像元光谱。提出了一种通过分区混合端元计算海洋溢油覆盖度的探测方法。首先对影像进行分区并使用N-FINDR算法进行端元预选;然后再利用独立分量分析(ICA)方法进行端元精选,按照负熵最大输出得到候选端元,并将地面同步参考光谱作为约束引入相似性溢油端元识别;最后基于非负矩阵分解方法(NMF)求取端元丰度,通过太阳耀斑区的修正,得到真实的溢油覆盖度。分区混合端元的提取较好的解决了全局端元变异及环境适应性差的问题,使精选后的端元具有更好的环境鲁棒性。为更好地衡量该算法精度,采用仿真数据与真实高光谱影像数据相结合进行实验验证。仿真实验中,人工设定溢油丰度,使用均方根误差(RMSE)和丰度估计误差对比评估估计丰度与设定丰度之间的差别,并设计了算法适应性和抗噪实验。结果表明采用MNF和ICA两种高光谱压缩方法,丰度估计误差均低于3%,重构图像的最小均方根误差RMSE最高为0.030 6,且具有较好的抗噪能力,验证了该算法的有效性。真实实验中,使用2011年山东长岛溢油8景机载高光谱影像数据为真实测试数据,由于真实遥感数据往往缺失地面同步丰度数据,导致对算法精度进行评价比较困难,使用仿真数据交互验证与目视解译数据相结合的方法进行精度评价,通过耀斑区修正后估测的机载高光谱成像总的溢油覆盖面积为1.17 km2,溢油覆盖度为22.85%,与现场人工估测面积偏差为2.15%,明显高于传统方法。受海洋破碎波、光谱变异性影响,和航空航天遥感器地面分辨率的限制,海洋溢油遥感中单个像元进行丰度解析是一个难题。基于亚像元丰度分解思想,讨论了海洋溢油覆盖度的问题,提出一种较为完善的海洋溢油覆盖度的计算办法,通过仿真数据和实际的高光谱溢油数据进行了方法的验证,实现了较为客观的自动化溢油覆盖度(丰度)探测方法,可以较为准确的估测海洋溢油的覆盖度,对溢油遥感面积的业务化探测具有积极意义。  相似文献   

8.
为解决盲源分离技术难以直接用于高光谱图像解混这一问题,将丰度非负及和为1约束作为盲源分离的目标函数,改变传统的独立性假设;同时,针对目标函数中具有大量的局部极小,引入蝙蝠优化算法,解决传统梯度类优化算法易陷入局部极值的问题.在降维过程中,提出一种基于奇异值分解去噪的正交子空间投影的降维方法.仿真数据和真实遥感数据实验表明,所提出算法收敛速度和解混准确度高,具有较强的抗噪声干扰能力,适用于像元纯度很低的高光谱图像解混.  相似文献   

9.
针对高光谱遥感图像中存在高度混合无纯像元的现象,提出了端元整体包容度约束,并将其加入非负矩阵分解的目标函数.在满足端元非负性与和为一约束的同时,利用数据在特征空间的几何特性,要求端元构成的单形体所容纳的像元尽可能多.该算法不需对原始数据降维,不损害数据的物理意义,在迭代过程中使用乘性规则,避免了传统梯度优化过程中常见的整体步长难以控制现象.对模拟图像和真实图像进行实验评测并比较了提取端元精准度、鲁棒性以及执行效率,结果表明,本文算法可有效分析高光谱遥感图像混合像元.  相似文献   

10.
基于流形学习和空间信息的改进N-FINDR端元提取算法   总被引:3,自引:0,他引:3  
光谱端元提取是对高光谱数据进一步分析的重要前提。由于双向反射分布函数(BRDF),像元内的多重散射和亚像元成分的异质性等因素,高光谱图像中的混合像元实际上是非线性光谱混合。传统的端元提取算法是以线性光谱混合模型为基础,因此提取的端元精度不高。在光谱非线性混合的基础上,提出一种将流形学习与空间信息结合的改进N-FINDR端元提取算法。首先通过自适应的局部切空间排列算法寻找嵌入在高维非线性数据空间的本质的低维结构,将原始高光谱数据非线性降维到低维空间。接着利用地物分布具有连续性的特点,通过增大空间同质区域的像元的权重进行空间预处理。最后通过寻找最大单形体体积进行端元提取。提出算法很好的解决了高光谱遥感数据非线性结构,并利用了空间信息,提高了端元提取的精度。模拟数据实验和真实高光谱遥感数据实验结果均表明,采用该算法得到的结果优于顶点成分分析(VCA) 算法、基于测地线距离的最大单形体体积(GSVM)算法和空间预处理的N-FINDR(SPPNFINDR)算法。  相似文献   

11.
光谱最小信息熵的高光谱影像端元提取算法   总被引:3,自引:0,他引:3  
端元提取是混合像元分解的关键,研究其算法在高精度的地物识别、丰度反演和定量遥感等方面具有重要意义。通过研究高光谱遥感影像光谱特征,结合信息熵理论,应用高斯分布函数,建立了一种新的高光谱影像端元提取算法,即光谱最小信息熵(spectral minimum shannon entropy,SMSE)算法。将该算法应用于AVRIRS高光谱影像的端元光谱提取,并经过与美国地质勘探局(United States Geological Survey,USGS)波谱库中的数据匹配,得知其提取端元的精度较高。同时,通过与经典的纯净像元指数(pixel purity index,PPI)和连续最大角凸锥(sequential maximum angle convex cone,SMACC)等端元提取算法进行实验比较和结果综合分析,发现光谱最小信息熵算法提取端元光谱效率更高、精度更好。此外,分别利用SMACC和SMSE提取Hyperion高光谱影像端元,得出SMSE的端元提取效果好于SMACC,从而可认为SMSE算法具有一定普适性。  相似文献   

12.
光谱解混是高光谱技术中的关键部分,对地物成分的定量分析至关重要。线性光谱解混方法在计算端元丰度时,大多需要涉及矩阵求逆或方阵行列式的计算,导致软件实现的计算复杂度高,且硬件实现困难。同时,当端元数量增加时,算法的计算量也会随之呈指数级快速增长。论文基于传统的正交子空间投影方法,利用正交原理,提出了一种新的光谱解混方法——正交向量投影。该方法首先利用Gram-Schmidt过程计算每个端元的最终正交向量分量,并将其作为代表端元的投影向量。然后对于任意的待解混光谱向量,直接将其投影到该正交向量上。最后,计算得到投影分量的长度与正交向量的长度比,即为该正交向量所代表端元的无约束丰度。该过程避免了正交子空间投影和最小方差方法中计算复杂、实现困难的矩阵求逆运算,更便于并行计算的设计和硬件实现。通过理论的推导分析,证明了该算法与正交子空间投影和最小方差方法是完全一致的。另外,由于算法避免了矩阵相乘和求逆运算,简化了解混过程,通过对不同算法复杂度的具体分析,也证明该算法相对其他算法可以对端元数量降低一个量级。最后,在模拟数据和实际图像上分别进行实验测试,结果的分析和比较,也说明了算法的有效性。  相似文献   

13.
The terrestrial reflection or emission spectrum obtained by the remote sensor is recorded in units of pixels. In most cases, a pixel usually contains many types of terrains. This pixel is a mixed pixel, and each of the terrains in the mixed pixels is called “endmember”. Estimating the number of endmembers is a significant step in many hyperspectral data mining techniques, such as target classification and endmember extraction. The paper proposes a separative detection method by the use of a weight-sequence geometry to estimate the number of endmembers. This method projects the spectral matrix into the orthogonal subspace by eigenvalue decomposition at first. Then, on the basis of the normalized eigenvalue sequence, the separative detection method innovatively uses a geometric criterion to find the separation point between the main factors and minor factors. Finally, the number of endmembers is determined by the sequence of the “separation point”. Validation through a series of simulated and real hyperspectral data, it indicates that the proposed method can accurately and rapidly detect the number of endmembers in the hyperspectral data without any prior information. In addition, the new method is also applicable to the ultra-high resolution remote spectral data in the future.  相似文献   

14.
基于光谱分类的端元提取算法研究   总被引:4,自引:0,他引:4  
目前成熟的端元提取算法是基于单形体几何学的像元纯度指数(PPO)算法,N-FINDR,VCA等算法.这些算法从图像所有像元中提取纯光谱,具有提取速度慢、精度不高的缺点;部分算法需要进行光谱降维,不利于小目标信息的提取.该文提出先利用基于空间特征的光谱分类算法进行分类,将格个图像划分成空间相邻、光谱相似的若干类,每一类的...  相似文献   

15.
高光谱图像中纯光谱提取方法   总被引:10,自引:7,他引:3  
吕群波  相里斌  薛彬  周锦松 《光子学报》2005,34(9):1336-1339
利用线性解混合方法处理高光谱图像数据,需要获取存在于光谱图像中的纯光谱.目前的纯光谱提取方法都需要复杂的运算,并且都没有被证明具有普遍适用的特点,在特征空间对光谱图像中信息存在形式进行有效分析的基础上,提出基于特征空间分析和光谱相关制图法相结合的纯光谱提取方法(FSASCM),具有复杂度低、对大多数高光谱图像数据普遍适用的特点,  相似文献   

16.
端元光谱提取是高光谱影像混合像元分解的关键。现有的端元提取方法多是仅利用了影像的光谱信息,忽略了像元间的空间相关性。现有研究基础上,提出了一种结合影像空间和光谱信息的高光谱影像端元光谱自动提取方法(integration of spatial-spectral information based endmember extraction,ISEE)。该方法首先进行影像子空间划分以增强影像局部的光谱信息特征,然后通过特征空间投影分析获得影像候选端元,最后依次在影像空间信息约束下和端元光谱信息约束下进行优化,得到最终的影像端元光谱集。仿真高光谱影像和真实高光谱影像的实验结果表明,结合影像空间和光谱信息的ISEE方法是有效的,且比一些常用方法提取的端元光谱更为准确。  相似文献   

17.
针对高光谱图像目标识别与分类的应用背景,提出了一种基于快速独立成分分析的高光谱图像目标分割算法.通过引入虚拟维数对图像中的目标端元数量进行估计,利用基于非监督正交子空间投影的异常端元提取算法自动获取目标端元光谱,并将其作为快速独立成分分析的初始混合矩阵.采用最小噪声分量变换对原始数据进行降维,利用快速独立成分分析从降维后的主成分中依次提取出图像中的独立分量.最后,对各独立分量进行恒虚警率检测与形态学滤波,从而得到最终的目标分割结果.对AVIRIS型高光谱图像的实验结果表明,该方法可有效探测出图像中的目标,并可获得较好的分割结果.  相似文献   

18.
端元提取技术在高光谱图像压缩中的应用   总被引:3,自引:0,他引:3  
高光谱图像海量数据如何实现大比例有效压缩是限制其应用的主要问题之一,而现有有损压缩方法存在大压缩比与光谱特性信息准确保留的矛盾,即使现有最优有损压缩方法也不能够得到令人满意的结果。文章基于混合像元分解的思想提出基于端元提取技术的数据有损压缩方法来解决该矛盾,首先用顶点成分分析(VCA)方法提取场景中地物的端元光谱,根据各端元与观测像元之间的光谱间余弦角相似性度量方法估计各端元的丰度,接着对端元光谱及丰度数据进行无损压缩,最后利用JPEG2000有损压缩方法对高光谱图像的所有单波段图像进行空间维大比例有损压缩。AVIRIS高光谱图像的仿真结果表明,压缩比得到大幅度提高,光谱信息得到有效恢复。在实现压缩比为50∶1时,大部分像元的光谱角误差在2%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号