首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究超临界CO2在高温吸热管内的传热特性是将其应用于聚光太阳能热发电技术中的基础.本文对此进行了数值模拟研究,分析了流体温度、流动方向、系统压力、质量流率和热流密度对对流传热系数和Nu数的影响.结果表明:高温区(800—1050 K)的对流传热系数和Nu数受流动方向和系统压力的影响均很小,但都随着质量流率的增大以及热流密度的减小而明显增大;而随着流体温度的升高,对流传热系数近似线性增大,Nu数则近似线性减小.另外,本文研究发现在高温区可忽略浮升力对传热的影响,而由高热流密度引起的流动加速效应会明显恶化传热.最后,选取了八种管内超临界流体传热关联式与模拟结果进行对比,发现使用基于热物性修正的关联式对高温区传热数据预测的结果优于使用基于无量纲数修正的关联式得到的结果,且其中预测效果最优的关联式得到的计算结果与模拟结果之间的平均绝对相对偏差为8.1%.  相似文献   

2.
本文对圆管内超临界状态下乙烷的湍流传热过程进行了数值模拟,分析了乙烷高温裂解对壁面热流密度、平均温度以及对流换热Nusselt数的影响。计算结果表明:考虑乙烷高温裂解吸热反应,管内平均温度会降低,出口处温度降低可达135 K;壁面热流密度则会显著增加,热出口处可增加近2倍;热裂解反应改善了超临界对流换热效果,Nusselt数可提高约20%。在本文计算条件下,经典的对流换热关系式可准确适用于不考虑热裂解反应的情况,而对于考虑裂解吸热反应的超临界乙烷传热情况则误差较大。  相似文献   

3.
Numerical modeling of heat exchange at a laminar stationary and pulsatile flow in rectangular channels with different aspect ratios of side lengths γ has been carried out by a finite difference method for two boundary conditions: a constant wall temperature and a constant heat flux density on the wall. For the boundary condition of the first kind, the similarity of distributions of the heat flux density and shear stress on the walls over the channel perimeter has been established. The reasons for a nonmonotonous dependence of the initial thermal interval length on γ are discussed. For the boundary condition of the second kind, the difference of the Nusselt number averaged over the perimeter at γ → 0 from its value for a flow in a flat channel has been explained. An increase in the Nusselt number averaged over the perimeter and the period of oscillations has been revealed for a pulsatile flow in the quasi-stationary regime at large amplitudes of the oscillations of the velocity averaged over the cross section.  相似文献   

4.
Two-dimensional temperature and heat flux distributions are calculated for an absorbing-emitting gray medium at radiative equilibrium in a rectangular enclosure. The bounding walls are gray and diffuse with arbitrary surface temperature distributions, and heat generation may take place inside the medium. As a first approximation, the problem is solved for optically thick systems (differential approximation). These results are subsequently improved by the introduction of a number of geometrical parameters to yield good accuracy for all optical thicknesses. As examples, two cases are discussed in detail: (1) uniform heat generation in a black enclosure and (2) an enclosure with one gray surface at constant temperature. Comparison with some numerical solutions generated by Hottel's zonal method shows excellent agreement.  相似文献   

5.
The aim of the present study is to develop a new experimental methodology that allows one to perform accurate measurements of the local heat transfer distribution before, in, and after a 180° sharp turn in static and rotating channels. Preliminary measurements of convective heat transfer coefficients are performed by means of infrared thermography applied to the steady state ‘heated-thin-foil’ technique. Some preliminary results in terms of Nusselt number Nu distributions and profile, as well as averaged Nu profiles along the channel axis, are presented. Results prove that infrared thermography is capable of measuring heat flux coefficients and detecting particular phenomena linked to the fluid flow configuration such as location of separation bubbles, influence of the channel aspect ratio as well as the influence of the channel rotation.  相似文献   

6.
圆管层流脉冲流动对流换热数值分析   总被引:3,自引:0,他引:3  
对等热流和等壁温边界条件下圆管内层流脉冲流动对流换热问题进行了数值模拟。在等热流边界条件下的数值计算结果与理论解吻合很好。计算结果表明:在等热流和等壁温边界下脉冲流动可引起速度、温度以及努塞尔数随时间波动,振幅越大,脉冲频率越小,波动越大。但它们的时均值均等于在相同雷诺数下稳态流动的值,脉冲流动不能强化换热。  相似文献   

7.
采用数值模拟的方法,研究了流道内上下两肋片均布置有涡产生器的扁管管片式散热板芯的传热与阻力特性,并与流道单面布置涡产生器的换热板芯进行了对比.结果表明,采用双面带涡产生器的肋片表面能在提高Nu的同时,降低流动阻力,换热性能得到了明显的提高,在Re=1500时,平均Nu数提高了8.6%,横向平均Nu最大提高了30%,阻力下降了6.5%.  相似文献   

8.
In this article, an experimental campaign devoted to analyzing the forced micro-convection features of heated gas flows through commercial stainless-steel microtubes having inner diameters of 172 μm and 750 μm is described. The experimental results obtained by heating the microtubes with an imposed uniform heat flux (H-boundary condition) at the external wall, in terms of Nusselt numbers, are compared to the predictions of the classical correlations validated for conventional pipes and to the correlations proposed for gas flows through microtubes under laminar and transitional conditions (100 < Re < 4,000). The cross-sections of the tested microtubes enabled the analysis of the effects of wall axial heat conduction on the Nusselt number. It was observed that the Nusselt number is strongly dependent on the Reynolds number in the laminar regime, and this fact is explained in the article with the effects of wall axial heat conduction and the difficulties in the experimental determination of the right exit bulk temperature of the gas flow, which cannot be ignored in the thermal analysis. The agreement between the Gnielinski correlation and the experimental Nusselt number is poor, especially for low Reynolds numbers, if one uses the average gas bulk temperature, obtained as the arithmetic mean between the inlet and outlet gas bulk temperature, in the definition of the experimental Nusselt number. On the contrary, the agreement with the Gnielinski correlation improves if the local wall-gas temperature difference near the exit of the microtube is used instead. The experimental results presented in the article demonstrate that the criteria for the design of accurate micro-convection tests can be quite different from those for the analysis of forced convection through conventional pipes.  相似文献   

9.
复合肋套管导热和对流耦合换热的数值模拟   总被引:1,自引:0,他引:1  
在层流范围内,数值模拟了带均布纵肋同心套管内的三维导热和对流耦合换热。结果表明间壁温度沿管长变化 较大且分布呈非线性变化;在通道人口流体内部温度和速度分布呈现层流附面层特征,换热的入口段比例随Re增大而加 大,入口段换热的Nu也随Re增大而加大;换热的Nu随管长增加趋于不变。  相似文献   

10.
Local features of thermophysical processes in the channels and pre-nozzle volumes of solid-propellant rocket engines with case-bonded charges of different cross-sectional shapes are considered. The influence of the charge shape on the heat exchange in the nozzle bottom is investigated. It is shown that the value of the Nusselt number at a critical point on the multi-nozzle bottom is determined both by the charge channel form and by the geometry of the pre-nozzle volume. By processing the numerical experimental results the criterial dependences for determining the Nusselt number in the areas of local increase of heat exchange intensity are obtained. The obtained dependences are compared with the known empirical formulas [1–4]. It is found that the use of empirical relationships to estimate the Nusselt number leads to incorrect determination of the parameters of heat transfer on the armored surfaces of the charge, the nozzle covers, and the input parts of the submerged rotating nozzle.  相似文献   

11.
本文详细讨论了DSMC方法中流体温度、能量及边界热流的统计方法,发展了一种从边界热流求得与壁面碰撞分子反射速度的方法。该方法被称为逆温度抽样算法(ITS,Inverse Temperature Sampling)方法。在此基础上,本文发展了DSMC方法中壁面处给定热流边界条件的实施方法。计算结果表明: ITS方法能准确抽样反射分子的特征温度,进而求得分子反射速度。基于该方法的给定热流边界条件可以准确求得壁面处温度分布,以及流场内的压力、速度。  相似文献   

12.
The analysis of a viscous fluid flow and heat transfer is carried out under the influence of a constant applied magnetic field over a curved stretching sheet. Heat transfer analysis is carried out for two heating processes, namely, prescribed surface temperature (PST) and prescribed heat flux (PHF). The equations governing the flow are modeled in a curvilinear coordinate system (r, s, z). The nonlinear partial differential equations are then transformed to nonlinear ordinary differential equations by using similarity transformations. The obtained system of equations is solved numerically by a shooting method using Runge-Kutta algorithm. The interest lies in determining the influence of dimensionless radius of curvature on the velocity, temperature, skin friction, and rate of heat transfer at the wall prescribed by the Nusselt number. The effects of Hartmann number are also presented for the fluid properties of interest.  相似文献   

13.
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

14.
Here magnetohydrodynamic (MHD) two-dimensional (2D) flow of an incompressible Burgers material bounded by a permeable stretched surface is addressed. The boundary layer flow equations are modelled. Heat transfer is discussed for power law heat flux at the surface and heat source. Convergent series solutions are constructed. Clarification of different emerging variables is presented through graphs of velocity, temperature and local Nusselt number. The present solutions are matched with the available published work in a limiting case.  相似文献   

15.
An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs.  相似文献   

16.
The steady flow and heat transfer over a moving thin needle with prescribed surface heat flux is studied. The similarity equations are obtained by using similarity transformation technique. The problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The plots of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented and their behaviors are discussed for different values of the needle size and the velocity ratio parameter. Results show that the decreasing of the needle size enhance the skin friction coefficient and the local Nusselt number on the needle surface. It is found that dual solutions exist (upper and lower branches) for a certain range of the velocity ratio parameter. A stability analysis of the solutions are performed and it shows that the upper branch solution is stable, while the lower branch solution is unstable.  相似文献   

17.
Heat transfer over a stretching surface with uniform or variable heat flux in micropolar fluids is investigated in this Letter. The boundary layer equations are transformed into ordinary differential equations, and then they are solved numerically by a finite-difference method. The effects of the material parameter K, Prandtl number Pr, velocity exponent parameter m, and heat flux exponent parameter n on the heat transfer characteristics are studied. It is found that the local Nusselt number is higher for micropolar fluids compared to Newtonian fluids.  相似文献   

18.
The heat transfer and entropy generation in a tube filled with double-layer porous media are analytically investigated. The wall of the tube is subjected to a constant heat flux. The Darcy-Brinkman model is utilized to describe the fluid flow, and the local thermal non-equilibrium model is employed to establish the energy equations. The solutions of the temperature and velocity distributions are analytically derived and validated in limiting case. The analytical solutions of the local and total entropy generation, as well as the Nusselt number, are further derived to analyze the performance of heat transfer and irreversibility of the tube. The influences of the Darcy number, the Biot number, the dimensionless interfacial radius, and the thermal conductivity ratio, on flow and heat transfer are discussed. The results indicate, for the first time, that the Nusselt number for the tube filled with double-layer porous media can be larger than that for the tube filled with single layer porous medium, while the total entropy generation rate for the tube filled with double-layer porous media can be less than that for the tube filled with single layer porous medium. And the dimensionless interfacial radius corresponding to the maximum value of the Nusselt number is different from that corresponding to the minimum value of the total entropy generation rate.  相似文献   

19.
We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.  相似文献   

20.
The three-dimensional Navier-Stokes equation and the k-ε viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions.The numerical method is validated by the relevant experiment.The flow field parameters,aerodynamic forces,and surface heat flux distributions for attack angles of 0°,2°,5°,7°,and 10° are obtained.The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters,aerodynamic force,and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system.When the attack angle reaches 10°,the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system,thus the thermal protection has failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号