首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number, squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle, the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.  相似文献   

2.
The entropy squeezing properties for a two-level atom interacting with a two-mode field via two different competing transitions are investigated from a quantum information point of view. The influences of the initial state of the system and the relative coupling strength between the atom and the field on the atomic information entropy squeezing are discussed. Our results show that the squeezed direction and the frequency of the information entropy squeezing can be controlled by choosing the phase of the atom dipole and the relative competing strength of atom-field, respectively. We find that, under the same condition, no atomic variance squeezing is predicted from the HUR while optimal entropy squeezing is obtained from the EUR, so the quantum information entropy is a remarkable precision measure for the atomic squeezing in the considered system.  相似文献   

3.
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.  相似文献   

4.
The entropy squeezing of an atom with a k-photon in the Jaynes-Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entropy squeezing is preferable to variance squeezing for zero atomic inversion. Moreover, for initial conditions of the system the relation between squeezing and photon transition number is also discussed. This provides a theoretical approach to finding out the optimal entropy squeezing.  相似文献   

5.
The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state,while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.  相似文献   

6.
The entropy squeezing properties of different types of moving three-level atoms coupled with a single-mode coherent field are studied. The influences of the moving velocity and initial states of the three-level atom on the entropy squeezing are discussed. The results show that, the entropy squeezing properties of the three-level atom depend on its initial state, moving velocity, and the type. A stationary three-level atom can not obtain a steady entropy squeezing whatever initial conditions are chosen, while a moving three-level atom can achieve a steady and optimal entropy squeezing through choosing higher velocity and appropriate initial state. Our result provides a simple method for preparing squeezing resources with ultra-low quantum noise of the three-level atomic system without additional any complex techniques.  相似文献   

7.
周青春  祝世宁 《中国物理》2005,14(2):336-342
The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.  相似文献   

8.
刘王云  安毓英  杨志勇 《中国物理》2007,16(12):3704-3709
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter $\gamma $, atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter $\gamma $, and that both atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom can influence the periodicity of field quantum entropy evolution.  相似文献   

9.
From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which entangles with the two-mode coherent fields. It also researches the relationship between the AOESSG and entanglement sudden death of the atom-fields, and discusses the influences of atomic initial state on the AOESSG and obtains the system parameter which controls the AOESSG.  相似文献   

10.
周并举  刘一曼  赵明卓  刘小娟 《中国物理 B》2010,19(12):124207-124207
From the viewpoint of quantum information,this paper studies preparation and control of atomic optimal entropy squeezing states(AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields.Necessary conditions of preparation of the AOESS are analysed,and numerical verification of the AOESS is finished.It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field,cutting the entanglement between the atom and field,and adjusting squeezing factor of the field.An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.  相似文献   

11.
邹艳  李永平 《中国物理 B》2009,18(7):2794-2800
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy. The results obtained from numerical calculation indicate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field, the atomic motion and the field-mode structure. The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields. Moreover, there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.  相似文献   

12.
A Lower Bound on the Entanglement in the Jaynes-Cummings Model   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡金芳  邹健 《中国物理快报》2005,22(7):1584-1587
The entanglement between an atom and field is investigated by using the 3aynes-Cummings model. The initial atomic state is supposed in a mixed state and the field is in a squeezed state. The lower bound on the entanglement quantified by concurrence is calculated. It is found that the entanglement with the atom being initially in a mixed state can be larger than that with the atom being initially in a pure state. The entanglement is not a monotone function of the squeezing parameter r of the field and it achieves the maximum for certain r and then decreases with further increase of r.  相似文献   

13.
The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).  相似文献   

14.
We investigate the entropy squeezing of a two-level atom in the Jaynes–Cummings model, and provide a scheme to generate the sustained optimal entropy squeezing of the atom via non-Hermitian operation. Our results show that the squeezing degree and the persistence time of entropy squeezing of atomic polarization components greatly depend on the non-Hermiticity intensity in non-Hermitian operation. Especially, under a proper choice of non-Hermiticity parameters, the sustained optimal entropy squeezing of the atom can be generated even though the atom is initially prepared in a no entropy squeezing state.  相似文献   

15.
The interaction between a two-level atom and a single-mode field in the k-photon Jaynes–Cummings model(JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed.In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states(coherent, squeezed and thermal states).  相似文献   

16.
Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.  相似文献   

17.
邹红梅  方卯发 《中国物理 B》2016,25(7):70305-070305
Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, nonMarkovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing.The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity.  相似文献   

18.
张剑  邵彬  邹健 《中国物理 B》2009,18(4):1517-1527
In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.  相似文献   

19.
朱爱东  张寿 《中国物理》2004,13(8):1276-1282
The dynamical property of a cascade three-level atom is investigated in the condition of atomic motion. The influence of atomic motion on the population and dipole squeezing is discussed. The results show that atomic motion makes the amplitude of atomic population be steady and increasing the parameter εp which denotes the atomic motion and the structure of field mode can shorten the period of collapse-revivals. By choosing an appropriate parameter εp, we can obtain a dipole squeezed atom of long standing.  相似文献   

20.
This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose--Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms,parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号