首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by a discrete and periodic temperature field in a periodic sawtooth potential is investigated. In order to clarify the underlying physical pictures of the heat engine, the heat flow via the potential energy and the kinetic energy of the particles are considered simultaneously. Based on describing the jumps among the three states, the expressions of the efficiency and power output of the heat engine are derived analytically. The general performance characteristic curves are plotted by numerical calculation. It is found that the power output-efficiency curve is a loop-shaped one, which is similar to one for a real irreversible heat engine. The influence of the ratio of the temperature of the hot and cold reservoirs and the sawtooth potential on the maximum efficiency and power output is analyzed for some given parameters. When the heat flows via the kinetic energy is neglected, the power output-efficiency curve is an open-shaped one, which is similar to one for an endroeversible heat engine.  相似文献   

2.
Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Pe′clet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.  相似文献   

3.
This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.  相似文献   

4.
The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial differential equations into ordinary ones. With the help of the shooting method, the reduced equations are then solved numerically. Comparisons are made with the previously published results in some special cases and they are found to be in excellent agreement with each other. The results obtained in this study are illustrated graphically and discussed in detail. The velocity is found to increase with an increasing Falkner-Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. Fluid velocity is suppressed with the increase of suction. The skin friction decreases with the increasing value of Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with the increasing value of Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter as well as by increasing the amount of suction.  相似文献   

5.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

6.
Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method (HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.  相似文献   

7.
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.  相似文献   

8.
On the basis of a generalized SSH model, an organic polymer ferromagnet theory is proposed at the finite temperature in the self-consistent mean field approximation, and the specific heat and charge density of the quasione-dimensional interehain coupling organic ferromagnets are presented. We find that an obvious feature is to present itself the round peak for the specific heat with the temperature. This indicates unambiguously the presence of the phase transition in the system. The transition temperature plays down with increasing of the interchain coupling t2 or decreasing of the electron repulsion u. The curves of charge density with the temperature debase monotonously. This result illustrates that the higher the temperature is, the more electrons are excited.  相似文献   

9.
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.  相似文献   

10.
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7℃ and 36.3℃ respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37℃-38℃ and 35℃-36℃ respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.  相似文献   

11.
Using the nonequilibrium Green's function technique, we investigate the current induced heat generation in Kondo regime. The Kondo effect influences the heat generation significantly. In the curve of heat generation versus the bias, a negative differential of the heat generation is exhibited. The symmetry of the heat generation is destroyed by the strong electron-electron interaction and the electron-phonon interaction.  相似文献   

12.
The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one are studied. It is found that the spin quantum numbers, the interlayer and intralayer exchange couplings, the anisotropy, the applied magnetic field, and the temperature all affect the specific heat of these superlattices. For both the ferromagnetic and ferrimagnetic superlattices, the specific heat decreases with increasing the spin quantum number, the absolute value of interlayer exchange coupling, intralayer exchange coupling, and anisotropy, while it increases with increasing temperature at low temperatures. When an applied magnetic field is enhanced, the specific heat decreases in the twolayer ferromagnetic superlattice, while it is almost unchanged in the two-layer ferrimagnetic superlattice at low field range at low temperatures.  相似文献   

13.
The quantum infinite range XY spin glass model with the infinite range planar Dzyaloshinskii-Moriya interaction in external field for spin S=1/2 is investigated theoretically. Numerical calculations show that, the specific heat depending on the temperature has crossover behavior; the weak field dependence of the specific heat can be fitted by the parabolic approximation, C/T=A+Bh2, the coefficient B is peaked near the transition point.  相似文献   

14.
王晓宏 《物理学报》2001,50(4):597-605
对1+1和2+1维空间上定向聚合问题的数值模拟结果显示,任意有限温度下的横向涨落和自由能涨落在聚合尺度t较大时都将趋于零温度时强耦合下的结果:Δx∝tν和ΔF∝tω(d=1+1时,ν=2/3,ω=1/3;d=2+1时,ν≈0.6,ω≈0.2).有限温度下,由于1+1维和2+1维空间上的比热C(T,t)∝t和1+1维空间上的熵涨落ΔS∝t1/2,1+1维空间上的系综能量涨落和内能涨落以及2+1维空间上的系综能量涨落均趋于t1/2而远强于自由能涨落.在2+1维空间上,定向聚合问题有发生相变的迹象:当熵涨落达到其最大值时,单位聚合尺度的熵涨落和内能涨落在聚合尺度t→∞时,可能会由低温下趋于有限值(零温度除外)转变为高温下趋于零 关键词: 定向聚合 表面生长现象 Kardar-Parisi-Zhang方程  相似文献   

15.
Ferrihydrite nanoparticles formed as a result of the microorganism activity have been studied using Mössbauer spectroscopy, X-ray powder diffraction analysis, and X-ray fluorescence analysis. Three positions of trivalent iron with nonoverlapping ranges of quadrupole splittings have been revealed in bacterial ferrihydrite: QS{Fe3+(1)} = 0.49–0.83 mm/s, QS{Fe3+(2)} = 0.84–1.10 mm/s, and QS{Fe3+(3)} = 1.25–1.73 mm/s. It has been experimentally demonstrated that the Fe3+(3) positions are the centers of nucleation of the hematite phase in the course of heat treatment.  相似文献   

16.
We present an analytic three-loop calculation for thermodynamic quantities of the O(n) symmetric Φ4 theory below Tc within the minimal subtraction scheme at fixed dimension d = 3. Goldstone singularities arising at an intermediate stage in the calculation of O(n) symmetric quantities cancel among themselves leaving a finite result in the limit of zero external field. From the free energy we calculate the three-loop terms of the amplitude functions ƒΦ, F+ and F of the order parameter and the specific heat above and below Tc, respectively, without using the e = 4-d expansion. A Borel resummation for the case n = 2 yields resummed amplitude functions fΦ and F that are slightly larger than the one-loop results. Accurate knowledge of these functions is needed for testing the renormalization-group prediction of critical-point universality along the λline of superfluid 4He. Combining the three-loop result for F with a recent five-loop calculation of the additive renormalization constant of the specific heat yields excellent agreement between the calculated and measured universal amplitude ratio A+/A- of the specific heat of 4He. In addition we use our result for fΦ to calculate the universal combination Rc of the amplitudes of the order parameter, the susceptibility and the specific heat for n = 2 and n = 3. Our Borel-resummed three-loop result for Rc is significantly more accurate than the previous result obtained from the ε-expansion up to O2.  相似文献   

17.
We present specific heat data on three samples of the dilute Ising magnet LiHoxY1-xF4 with x=0.018, 0.045, and 0.080. Previous measurements of the ac susceptibility of an x=0.045 sample showed the Ho3+ moments to remain dynamic down to very low temperatures, and the specific heat was found to have unusually sharp features. In contrast, our measurements do not exhibit these sharp features in the specific heat and instead show a broad feature, for all three samples studied, which is qualitatively consistent with a spin glass state. Integrating C/T, however, reveals an increase in residual entropy with lower Ho concentration, consistent with recent Monte Carlo simulations showing a lack of spin glass transition for low x.  相似文献   

18.
We present a detailed analysis of the heat capacity of a near-perfect S=1/2 kagome antiferromagnet, zinc paratacamite Zn(x)Cu(4-x)(OH)(6)Cl(2), as a function of stoichiometry x-->1 and for fields of up to 9 T. We obtain the heat capacity intrinsic to the kagome layers by accounting for the weak Cu2+/Zn2+ exchange between the Cu and the Zn sites, which was measured independently for x=1 using neutron diffraction. The evolution of the heat capacity for x=0.8...1 is then related to the hysteresis in the magnetic susceptibility. We conclude that for x>0.8 zinc paratacamite is a spin liquid without a spin gap, in which unpaired spins give rise to a macroscopically degenerate ground state manifold with increasingly glassy dynamics as x is lowered.  相似文献   

19.
采用微乳液法制备了纯相立方和六方晶相NaYF4:Yb3+,Er3+发光材料,微乳液体系选择了CTAB(十六烷基三甲基溴化铵)-正丁醇-正辛烷-水。研究了NaF/Y3+比例、反应温度、反应时间和体系pH值等对相形成的影响,以及陈化、后续热处理温度和时间对颗粒尺寸和发光性能的影响。结果表明:在NaF/Y3+比例小于5、体系pH=5~6、反应温度为140 ℃、反应时间为24 h的条件下,可得到立方相α-NaYF4:Yb3+,Er3+,粒径约为200 nm;在NaF/Y3+比例大于5、体系pH=1~4、反应温度为160 ℃、反应时间为60 h以上的条件下,可得到六方相β-NaYF4:Yb3+,Er3+,粒径约为1 μm。样品在980 nm激光激发下,在521,529,541,549 nm 处有发光峰,最强发光峰为541 nm,表现为明亮的绿色。  相似文献   

20.
The temperature-composition (Tx) phase diagram and NFL characteristics in the electrical resistivity ρ(T), specific heat C(T), and magnetic susceptibility χ(T) at low temperatures for the systems U1−xMxPd2Al3 (M=Y,Th) are described. The Tx phase diagram, the NFL characteristics, and the underlying mechanism for the NFL behavior are distinctly different for M=Y3+ and Th4+, apparently reflecting the difference in valence of the M atom substituents, and suggesting that U is tetravalent in these two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号