首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
本文在高频交流激励模式下,采用同轴圆柱构型激励器,开展了介质阻挡体放电对空气/甲烷同轴剪切扩散火焰燃烧特性影响实验研究。激励器敷设在外喷嘴环缝以电离空气,采用纹影系统和B型热电偶分别获取流场形态和火焰温度,激励频率为8 kHz,通过改变气体流量和放电电压,分析了不同工况下射流流场、火焰结构和火焰温度在等离子体作用下的变化规律。结果表明:等离子体气动效应能有效增强射流湍流强度,强化空气/甲烷掺混,增大射流角,并随激励电压提高作用效果逐渐增强,实验中未形成明显扩张流动的初始射流在放电电压30 kV时其射流角最大为23.5°。贫燃条件下等离子体激励会改善火焰形态,增强燃烧稳定性,并在流量较低时缩短火焰长度。此外,富燃火焰下游温度会随着激励强度增大不断升高,而贫燃火焰下游温度变化受上游燃烧强度影响存在升高和降低两种情况。  相似文献   

2.
燃烧振荡是不稳定燃烧过程与燃烧室内声波耦合产生的一种现象,在燃气轮机的贫预混燃烧室中较为常见,其发生易损坏燃烧室结构及缩短运行寿命。本文通过模型燃烧室进行系列实验研究燃料与空气的混合时间对旋流预混燃烧稳定性的影响规律。实验中通过改变预混长度和空气流速来改变混合时间,通过变当量比获得燃烧振荡与稳定的范围。实验结果表明混合时间对燃烧稳定性有重要影响,仅当混合时间处于一定区间内时才有可能发生燃烧振荡,发生燃烧振荡的当量比范围也与混合时间有关。本文同时还研究了燃烧振荡频率、振幅与当量比和空气流速的关系。  相似文献   

3.
预混燃烧室燃料与空气混合过程中出现的自点火会引起回火与挂火,烧毁燃料喷嘴。针对这一问题,利用实验台模拟贫燃燃烧室预混过程,燃料射流与预热后的空气协流同向喷入石英管预混段中,研究自点火现象。本文结合机器学习和物理规律分析,开展湍流混合过程的自点火预测研究。基于二元逻辑回归建立了机器学习模型,模型的特征由分析影响自点火的物理规律得到,训练和校验模型所需的数据由燃料射流-空气协流的自点火实验获得。结果显示,机器学习方法能快速、准确地预测混合过程中自点火的发生和火焰类型,并揭示其关键影响因素。与传统的数值计算方法相比,机器学习方法预测自点火所需的时间仅为传统数值模拟方法的几千分之一。  相似文献   

4.
为发展微尺度燃烧器并拓展微尺度燃烧理论,对具有外部伴流空气的甲烷非预混微喷管射流火焰燃烧特性进行了实验研究。微喷管采用内径为710μm、425μm及280μm的不锈钢管,通过实验得到了微喷管非预混射流火焰的火焰形态、高度、最小熄灭流速及吹熄极限,并与常规尺度(管内径2 mm)非预混射流火焰进行了对比。研究表明微喷管射流火焰只有层流火焰一种形态;微喷管射流火焰高度主要取决于燃料流速而不受外部伴流速度影响;微喷管射流火焰的吹熄极限随伴流速度先增加后减小,而微射流火焰的最小熄灭流速受伴流空气速度影响较小,随管径减小微喷管射流火焰的可燃范围急剧减小。  相似文献   

5.
采用叶轮型旋流燃烧器,研究了旋流数、叶片数以及流量等因素对氨气预混旋流燃烧火焰稳定性和燃烧极限的影响.实验结果表明,在一定当量比下,氨气预混旋流燃烧火焰会失稳发生回火或振荡抬举;随着旋流数的增大或叶片数的增加,火焰更易失稳发生回火;石英玻璃高度越高,内部流场结构越完整,火焰高度越高。氨气预混旋流火焰贫燃极限在φ=0.64~0.76之间,富燃极限在φ=1.47~1.74之间。随着总流量的增大,贫燃极限逐渐增大,富燃极限波动较大,总体燃烧极限范围变大;随着旋流数的增大、叶片数的增加或石英玻璃高度的升高,燃烧极限范围变窄。  相似文献   

6.
利用OH-PLIF技术,研究了甲烷空气预混射流火焰,在不同出口雷诺数下,不同氮气稀释比例下火焰OH自由基的二维分布以及火焰的前锋面结构特性,以此实现对柔和燃烧的基础特性研究。实验结果显示,在获得大量氮气稀释后,预混火焰的OH浓度峰值减少了30%以上,并且整个燃烧反应明显延迟,但火焰面面密度没有发生明显变化。同时发现,改变出口雷诺数对火焰OH浓度影响较小,但是增加出口雷诺数可以扩大燃烧反应区。  相似文献   

7.
当量比和初始混合模式对无焰燃烧的影响   总被引:1,自引:0,他引:1  
对燃料一空气非预混、完全预混与部分预混三种混合模式下的无焰燃烧状态进行了实验和数值模拟研究。采用了详细化学反应机理和已被实验验证的算法进行数值模拟。研究发现三种混合模式下无焰燃烧状态的区别是由初始反应物的射流总动量的不同决定的。当炉内大尺度流场结构类似时,初始反应物射流总动量越大,炉内烟气循环越剧烈,温度分布越均匀,峰...  相似文献   

8.
采用叶轮型旋流燃烧器,选取氢气作为燃料添加剂,研究了掺氢比对氨气旋流火焰稳定性的影响,分析了不同旋流数、叶片数、当量比以及预混气总流量条件下,旋流火焰形态变化。测定并分析了不同参数对旋流火焰燃烧极限范围的影响。结果表明,随掺氢比的增大,火焰逐渐由“V”型转化为稳定的“M”型,燃烧反应愈发充分;高旋流数(1.27)或低叶片数(6片)相比低旋流数(0.42)或高叶片数(8片)更有利于旋流火焰的稳定和燃烧的充分进行;相比富燃,贫燃有利于形成稳定的旋流火焰;预混气总流量较大时,火焰高度较高.对于燃烧极限,掺氢比越高,极限范围越大;总流量的变化对贫燃极限影响较小,对富燃极限影响较大;高旋流数(1.27)条件下,燃烧极限范围较大。  相似文献   

9.
通过实验和数值模拟的方法研究了添加C_6F_(12)O对锂离子电池发生热失控后的排出气体/空气预混火焰的影响。在常温常压下,利用本生火焰装置测试了一定当量比范围的甲烷/空气和排出气/空气预混火焰在不同C_6F_(12)O添加量条件下的火焰速度。通过包含燃料燃烧和C_6F_(12)O热分解的动力学机理模型进行数值模拟并与实验测试的火焰速度进行比较,结果表明在C_6F_(12)O添加量较低的贫燃侧,层流火焰速度趋势具有良好的一致性。尽管燃料类型不同,C_6F_(12)O在化学当量以及富燃侧的抑制效能明显优于贫燃侧,并且相比于纯甲烷,C_6F_(12)O更适用于抑制排出气体/空气预混火焰。  相似文献   

10.
对Solar低排放预混燃烧系统的燃烧稳定性进行了数值研究.应用非定常N-S方程、雷诺应力紊流模型及涡团耗散燃烧模型,数值模拟了该类型燃烧器在不同的燃料空气供给条件下的气流流动特性和压力振荡特性,并给出了不稳定发生时压力和速度振荡的幅值和频率.根据供给条件的不同,燃烧可以是稳定的或是不稳定的,取决于燃料到火焰前沿的迟滞时间.采用CFD方法,可精确地获得燃料到火焰前沿的迟滞时间,证实了所采用的模型能够精确预测不稳定燃烧的出现及振荡特性.通过调整燃料与空气的供给条件,可使振荡激励或阻尼.  相似文献   

11.
The objective of this study is to construct a regime diagram for laminar flames stabilized behind flame holders with respect to the presence of a recirculation zone (RZ), trend of heat loss to the burner, and flow strain and flame curvature effects. This is achieved by varying the radius of the cylindrical flame holder and the mixture velocity between the flashback limit and the blow-off limit at a fixed equivalence ratio. It is found that for all flame holders, a RZ vortex is not present near the flashback limit. At flashback, flow strain is almost zero and the flame curvature is found to be the main contributor to flame stretch. With increasing mixture velocity, the heat loss to the flame holder decreases for smaller radii and a RZ does not appear till blow-off occurs. For flame holders with radii greater than twice the flame thickness, the heat loss to the flame holder first decreases with increasing mixture velocity without a RZ. A further increase in the mixture velocity does not result in blow-off but instead, a RZ appears behind the flame holder reversing the heat loss trend. In this scenario, flow strain is found to increase significantly and becomes the major contributor to flame stretch, although curvature effects are still present. With the RZ present, the blow-off limits are significantly extended and the stabilization mechanism is altered. The RZ vortex shields the flame base from intense pre-heating resulting from the increase in heat loss to the flame-holder while it provides support to the flame leading edge by recirculation of hot products. The results obtained from this study are used to construct a regime diagram, which offers a broader view of the whole flame stabilization process and its mechanisms.  相似文献   

12.
The presence of swirl in combustion systems produces a marked change in their boundary layer flashback behaviour. Two aspects of swirling flow are investigated in this study: the effect of the swirl-generated wall-normal pressure gradient, and the effect of misalignment between the mean flow direction and the direction of flame propagation. The analysis employs Direct Numerical Simulation (DNS) of fuel-lean premixed hydrogen-air flames in turbulent planar channel flow with friction Reynolds number of 180. The effect of swirl on the flashback process is investigated by imposing a wall-normal pressure gradient profile. Analysis of the DNS data shows how the resulting differences in flow field and flame topology contribute to the differences in the overall flashback speed. Misalignment of the flow and propagation directions leads to asymmetry in the flame shape statistics as streaks of high velocity fluid in the boundary layer cleave into the flame front at an angle, yielding an increase in flame surface density away from the wall. Swirl has a stabilising effect on the turbulent flame front during flashback along the centre-body of a swirling annular flow due to the density stratification across the flame front, and produces a reduction in turbulent consumption speed. However the swirl also sets up a hydrostatic pressure difference that drives the flame forward, and the net effect is that the flashback speed is increased. The dominance of hydrostatic effects motivates development of relatively simple modelling for the effect of swirl on flashback speed. A model accounting for the inviscid momentum balance and for confinement effects is presented which adequately describes the effect of swirl on flashback speed observed in previous experimental studies.  相似文献   

13.
The effect of inlet swirl on the flow development and combustion dynamics in a lean-premixed swirl-stabilized combustor has been numerically investigated using a large-eddy-simulation (LES) technique along with a level-set flamelet library approach. Results indicate that when the inlet swirl number exceeds a critical value, a vortex-breakdown-induced central toroidal recirculation zone is established in the downstream region. As the swirl number increases further, the recirculation zone moves upstream and merges with the wake recirculation zone behind the centerbody. Excessive swirl may cause the central recirculating flow to penetrate into the inlet annulus and lead to the occurrence of flame flashback. A higher swirl number tends to increase the turbulence intensity, and consequently the flame speed. As a result, the flame surface area is reduced. The net heat release, however, remains almost unchanged because of the enhanced flame speed. Transverse acoustic oscillations often prevail under the effects of strong swirling flows, whereas longitudinal modes dominate the wave motions in cases with weak swirl. The ensuing effect on the flow/flame interactions in the chamber is substantial.  相似文献   

14.
Large-Eddy Simulations were performed to study the flashback-induced flame shape transition of a lean premixed M flame in a staged liquid-fuelled aeronautical lean-burner, as observed experimentally. The BIMER combustor is a Lean Premixed Prevapourised (LPP) burner composed of two stages, each with its own injector and swirler: the main outer stage, called multipoint, uses jet-in-crossflow injection to achieve the LPP regime, while the central stage, called pilot, uses a pressure swirl injector to create a hollow cone spray to stabilise the flame. During LPP operation, this M flame presents a strong acoustic activity, promoting a periodic flashback of its leading edge. When, aiming to stabilise the flame, the pilot injection is increased and the multipoint injection decreased, the oscillating leading edge (due to the longitudinal acoustic perturbations) attaches to the pilot spray, changing the flame into a Tulip shape. Two phenomena were identified as being the most relevant causes of this flame shape transition. First, the leading edge position and the thermoacoustic instability amplitude are directly linked to the combustion chamber final temperature. The higher the temperature in the chamber, the more upstream the leading edge stabilises, and the higher the acoustic oscillation amplitude, both increasing the risk of a successful flashback. Second, the injection regime with high pilot injection allows the leading edge to attach to the pilot spray, as the flame only transitions when the pilot spray is sufficiently high. The higher the pilot fuel flow, the higher the amount of fuel sprayed in the critical region where the flame might attach for a transition to the Tulip shape. Therefore, as the change in injection regime is the main mechanism lean staged burners use to reduce emissions while increasing operability, this works shows that an M flame is unsuitable to such burners with similar aerodynamic topology and properties.  相似文献   

15.
When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.  相似文献   

16.
Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.  相似文献   

17.
The present work analyzes cylindrical diffusion flames (Tsuji burner) under low stretch condition, considering fuel injection also from the backward region of the burner. To highlight the fundamental aspects of this flame, some assumptions are imposed, like constant thermodynamic and transport coefficients, unitary Lewis number and no radiative heat loss. It is also considered potential flow model and incompressible Navier–Stokes model. Despite the simplicity of the former model, results from both models show good agreement. Also, an asymptotic analysis describing the problem far from the burner is able to capture the most important mechanisms controlling the flame, then the flame shape is determined and the dependence of the characteristic length scales on Peclet number (based on the burner properties), free stream velocity and stoichiometry is revealed. The results show that the flame width is proportional to the mass stoichiometric coefficient and reciprocal to the Peclet number the 1/4 power and free stream velocity the 3/4 power, and that the flame height is proportional to the square of the mass stoichiometric coefficient and to the square root of the ratio of Peclet number to free stream velocity. In addition, an asymptotic stability analysis reveals low-stretch flame extinction to be caused by reduction in fuel and oxidizer concentrations, which provides the range of the stoichiometric coefficient for stable regime, and at the same time the range of heat released.  相似文献   

18.
The frequency response of three lean methane/air flames submitted to flowrate perturbations is analyzed for flames featuring the same equivalence ratio and thermal power, but a different stabilization mechanism. The first flame is stabilized by a central bluff body without swirl, the second one by the same bluff body with the addition of swirl and the last one only by swirl without central insert. In the two last cases, the swirl level is roughly the same. These three flames feature different shapes and heat release distributions, but their Flame Transfer Function (FTF) feature about the same phase lag at low frequencies. The gain of the FTF also shows the same behavior for the flame stabilized by the central insert without swirl and the one fully aerodynamically stabilized by swirl. Shedding of vortical structures from the injector nozzle that grow and rollup the flame tip controls the FTF of these flames. The flame stabilized by the swirler-plus-bluff-body system features a peculiar response with a large drop of the FTF gain around a frequency at which large swirl number oscillations are observed. Velocity measurements in cold flow conditions reveal a strong reduction of the size of the vortical structures shed from the injector lip at this forcing condition. The flame stabilized aerodynamically only by swirl and the one stabilized by the bluff body without swirl do not exhibit any FTF gain drop at low frequencies. In the former case, large swirl number oscillations are still identified, but large vortical structures shed from the nozzle also persist at the same forcing frequency in the cold flow response. These different flame responses are found to be intimately related to the dynamics of the internal recirculation region, which response strongly differs depending upon the injector used to stabilize the flame.  相似文献   

19.
Controlling the flame shape and its liftoff height is one of the main issues for oxy-flames to limit heat transfer to the solid components of the injector. An extensive experimental study is carried out to analyze the effects of co- and counter-swirl on the flow and flame patterns of non-premixed oxy-flames stabilized above a coaxial injector when both the inner fuel and the annular oxidizer streams are swirled. A swirl level greater than 0.6 in the annular oxidizer stream is shown to yield compact oxy-flames with a strong central recirculation zone that are attached to the rim of central fuel tube in absence of inner swirl. It is shown that counter-swirl in the fuel tube weakens this recirculation zone leading to more elongated flames, while co-swirl enhances it with more compact flames. These results obtained for high annular swirl levels contrast with previous observations made on gas turbine injectors operated at lower annular swirl levels in which central recirculation of the flow is mainly achieved with counter-rotating swirlers. Imparting a high inner swirl to the central fuel stream leads to lifted flames due to the partial blockage of the flow at the injector outlet by the central recirculation zone that causes high strain rates in the wake of the injector rim. This partial flow blockage is more influenced by the level of the inner swirl than its rotation direction. A global swirl number is then introduced to analyze the structure of the flow far from the burner outlet where swirl dissipation takes place when the jets mix. A model is derived for the global swirl number which well reproduces the evolution of the mass flow rate of recirculating gases measured in non-reacting conditions and the flame liftoff height when the inner and outer swirl levels and the momentum flux ratio between the two streams are varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号